«THE LARGE SIEVE»

By U. V. LINNIK

(Communicated by I. M. Vinogradoff, Member of the Academy, 2. X. 1940)

1. From Viggo Brun's investigations we know that if from the numbers $1, 2, \ldots X$ we delete k classes of residues to every prime modulus pi under the condition

$$1 \leqslant p_i \leqslant \sqrt{X} \tag{1}$$

the number of remaining numbers will not exceed

$$c_{1}\left(k\right)\frac{X}{\ln^{k}X}$$

 $c_1(k)$ being a constant depending on k only. This method, however, is not applicable to the estimation of the number of remaining numbers, if we delete not a constant number k of classes of residues for every p_i , but $f(p_i)$ classes of residues (mod p_i) where $f(p_i)$ increases with p_i .

We shall here discuss this question with a view to give some further applications to the theory of primes. We shall call the described opera-

tion «the large sieve». 2. Theorem I. Suppose that we are given Z different integers M_1, M_2, M_Z between 1 and X. Consider all primes p_i between 1 and \sqrt{X}

$$1 \leqslant p_i \leqslant \sqrt{X}. \tag{1}$$

Let, further, a function f(p) be given, which is positive for p > 0 and satisfies the condition $f(p) \leq p$. Denote the min $\frac{f(\hat{p}_i)}{p_i}$, p_i running over (1), by $\tau_X > 0$. Then for every prime p_i from (1) between the numbers M_i $(i=1,2,\ldots,Z)$ there are at least $p_i-f(p_i)$ distinct classes of residues $(\text{mod } p_i)$ with a possible exception of not more than

$$Y \leqslant 20\pi \frac{X}{\tau_X^2 Z} \tag{2}$$

numbers pi.

Example. Let M_i ($i=1, 2, \ldots, Z$) be primes; $M_i = p_i$, $f(p) = p^{\frac{1}{4}}$, then $\tau_X = \frac{1}{1}$ and $Y = 80X^{\frac{1}{4}} \ln X$ for sufficiently large X.

mi

Le

Cha equ

whe all amo so t

X

Nex

and

Now

S

 p_i a nu

l'URSS

HEMATICS

. X. 1940)

if from the every prime

(1)

nation of the ant number k idues $\pmod{p_i}$

e some further escribed opera-

ferent integers een 1 and VX

(1)e for p > 0 and

unning over (1), n the numbers asses of residues

(2)

 $=p_i, \ f(p)=p^{\frac{3}{4}},$

Theorem II (a consequence of I). If we delete from the numbers $1, 2, \ldots, X$ the $f(p_i)$ classes of residues to each of Y arbitrarily fixed moduli pi under (1), the number of remaining numbers will not exceed

$$Z \leqslant 20\pi \frac{X}{ au_X^2 Y}$$
 .

Proof. Consider the sum $S(\alpha) = \sum_{j=1}^{D} e^{2\pi i \alpha M_j}$. Then we have

$$\int_{0}^{1} |S(\alpha)|^{2} d\alpha = Z. \tag{3}$$

Let p be one of the p_i and $\delta = \frac{\tau_X}{20\pi X}$. We form the integral

$$I_p = \int_{-\delta}^{\delta} \sum_{y=0}^{p-1} \left| S\left(\frac{y}{p} + x\right) \right|^2 dx. \tag{4}$$

The integrand can be written in the form

$$\sum_{y=0}^{p-1} \sum_{j,j'}^{Z} e^{2\pi i \left(\frac{y}{p} + \varkappa\right) (M_j - M_{j'})}.$$

Changing the order of summation and effectuating it, we find it to be equal to

 $p \sum_{\substack{M_j-M_{j'}\equiv 0 (\text{mod } p)}} e^{2\pi i x (M_j-M_{j'})} = T_p > 0$ where j and j' run so that $M_j-M_{j'}\equiv 0 \pmod{p}$. Let ξ_1,ξ_2,\ldots,ξ_s be all distinct residues \pmod{p} of the numbers M_1, \ldots, M_Z , and let ξ_1 occur among these numbers a_1 times, ξ_2 occur a_2 times, ... ξ_s occur a_s times, so that $a_1 + a_2 + \ldots + a_s = Z$. We have further

$$\left| e^{2\pi i x (M_j - M_{j'})} - 1 \leqslant \left| e^{\frac{2\pi \tau \chi}{20\pi}} - 1 \right| < \frac{e}{10} \tau_X$$

|x| being less than &, so that we can write

$$T_p > p (a_1^2 + \ldots + a_s^2) \left(1 - \frac{e_s}{10} \tau_X\right).$$

Next we apply Schwarz' inequality in the form

$$(a_1^2 + a_2^2 + \ldots + a_s^2) \gg \frac{(a_1 + \ldots + a_s)^2}{s} = \frac{Z^2}{s}$$

and find

$$T_p > Z^2 \frac{p}{s} \left(1 - \frac{e}{10} \tau_X\right)$$
 .

Substituting into (4), we get

$$I_p > 2\delta Z^2 \left(1 - \frac{e}{10} \tau_X\right). \tag{5}$$

Now let us consider the numbers p_i , for which there are less than $p_i - f(p_i)$ distinct residues (mod p_i) between the numbers M_j ; for such a number p we have

$$s \le p - f(p); \quad \frac{p}{s} \ge \frac{p}{p - f(p)} = \frac{1}{1 - \frac{f(p)}{p}} > 1 + \frac{f(p)}{p} \ge 1 + \tau_X$$

so that

$$I_{p} > 2 \delta Z^{2} \left(1 + \mathsf{t}_{X}\right) \left(1 - \frac{e}{10} \, \mathsf{t}_{X}\right) > 2 \delta Z^{2} \left(1 + \frac{1}{2} \, \mathsf{t}_{X}\right).$$

Introducing now

$$I_p' = I_p - \int_{\lambda}^{\delta} |S(\mathbf{x})|^2 d\mathbf{x}$$
 (6)

we can write

$$\int_{0}^{1} |S(\alpha)|^{2} d\alpha \geqslant \sum_{p} I'_{p} \tag{7}$$

the summation being extended over Y primes mentioned above. In fact, the integrand is positive and the sets, over which the integration extends, do not intersect for

$$\left|\frac{x}{p_1} - \frac{y}{p_2}\right| \geqslant \frac{1}{p_1 p_2} \geqslant \frac{1}{X} > 2\delta$$

x and y being not equal to zero. Now using the obvious inequality

$$\int_{-\delta}^{\delta} |S(\mathbf{x})|^2 d\mathbf{x} \leqslant 2\delta Z^2,$$

we get from (6)

$$I_p' > 2\delta Z^2 \left[\left(1 + \frac{1}{2} \tau_X \right) - 1 \right] = \delta Z^2 \tau_X;$$

substituting it into (7), summing over Y primes p and using (3), we get

$$Z\geqslant Y\delta Z^2 au_X; \quad \delta=rac{ au_X}{20\pi X} \; .$$

Hence $Y \leqslant \frac{20\pi X}{\tau_{\pi}^2 Z}$, q. e. d.

Stekloff Institute of Mathematics. Leningrad. Received 29. X. 1940.

REFERENCES

1 Viggo Brun, Le crible d'Eratosthène et le théorème de Goldbach, Kristiania (1920),

Comp

1. On

SU

définit da la distrib

Si B(

où C est
Dans
santes pou
B(y) s'an
saires, ob
Théo
tinue et d
est continu
Théo
B(y). Si
de zéro da

Théo
dans l'inte
du côté dr
(y₀, y₂), oi
ou bien y
plus droite
Théo

A(y) et 1

* Dû à