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Abstract. Given a primitive, non-CM, holomorphic cusp form f with nor-
malized Fourier coefficients apnq and given an interval I Ă r´2, 2s, we study
the least prime p such that appq P I . This can be viewed as a modular form
analogue of Vinogradov’s problem on the least quadratic non-residue. We ob-
tain strong explicit bounds on p, depending on the analytic conductor of f for
some specific choices of I.

1. Introduction

The present article is concerned with understanding the distribution of the
initial Fourier coefficients of primitive holomorphic cusp forms at primes. Suppose
f is such a form of weight k for the group Γ0pNq. We further assume that f is
non-CM and has trivial nebentypus. The normalized Fourier coefficients of f at
infinity are denoted by papnqqně1, so that ap1q “ 1 and

fpzq “

8
ÿ

n“1

apnqn
k´1
2 epnzq,

where, as usual, epzq denotes e2πiz and with this normalization, the Ramanujan
bound (proved by Deligne [6]) says ´2 ď appq ď 2 for primes p. Furthermore,
the function n ÞÑ apnq is real-valued and multiplicative. We refer the reader to
the text [12] for background information on holomorphic modular forms. The
Sato-Tate conjecture for distribution of the angles θp, defined by appq “ 2 cos θp,
as p runs over primes, which is now a theorem of Clozel, Harris, Shepherd-Barron
and Taylor [3, 31, 9], implies, in particular, that any interval of positive measure
within r´2, 2s contains infinitely many values of appq. The goal of this article
is to obtain bounds for the least prime p such that appq lies in a fixed interval
I Ă r´2, 2s. This can be considered as an analogue of Vinogradov’s problem of
estimating, given a modulus q ě 1, the size of the least quadratic non-residue
modulo q (see [2], [32]). The quality of our bounds will be measured in terms of
the analytic conductor qpfq “ Nk2 of the form f (see §2.1), and also separately in
term of the weight k of the form, considering the level N to be fixed and in terms
of the level N , considering the weight k to be fixed. We restrict our attention to
forms with trivial nebentypus in order to clarify the presentation but the methods
presented here can be extended to a more general setting.

Let I Ă r´2, 2s. Theorem 1.6 of the paper [22] of Lemke-Oliver and Thorner
implies that there exists a constant A depending only on I such that appq P I for
some prime p ď qA. Their method relies on effective log-free zero density estimates
for the L-function associated with f , and the Turán power-sum method. The
value of the constant A is not stated explicitly in their paper but it is not hard
to see that the constant is effective and can be worked out explicitly. However
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the method is likely to produce quite large values of A. Our aim in the present
work is to make the value of A as small as possible for some specific intervals.

We define, when κ is positive and x P r0, 1s:

F px;κq “

ż x{p1`xq

0

hκ´1dh

1 ´ h
“

ÿ

kě0

1

κ ` k

´ x

1 ` x

¯κ`k
. (1.1)

Note that F p¨;κq is increasing between F p0;κq “ 0 and F p1;κq “
ş1{2
0

hκ´1dh
1´h .

We thus define a function G p¨;κq with value in r0, 1s by
G py;κq “ maxtx P r0, 1s : F px;κq ď 1{yu. (1.2)

The function G is non-increasing and we have G py;κq “ 1 when y ď 1{F p1;κq

and by convention G p8;κq “ 0.
We now state our main results which depend crucially on knowledge about the

analytic properties of the symmetric power L functions associated to f (see §2.1
for definition). This is likely to change in the future; only small changes would be
required in our proofs to reflect any such improvement. Here is the assumption
we rely on.

Hypothesis H`: The L-function Lps, sym`pfqq has analytic continuation to
the entire complex plane and it satisfies the bound

Lp1{2 ` it, sym`pfqq !ε qpsym`pfq, sqλ``ε

for any ε ą 0.
For holomorphic forms, the automorphy of Lps, sym` fq has been known for

` ď 8 by [7, 17, 18, 16, 4, 5], and has recently been proved for all ` when N is
squarefree by Newton-Thorne [28]. As a result, these L-functions admit holomor-
phic continuation to the entire complex plane and by the convexity principle, H`

holds with λ` “ 1{4 (known as the convexity bound) for ` ď 8 unconditionally
and for all ` when N is squarefree.

Our results are the following.

Theorem 1.1. For any δ P p0, 2s, let θ1pδq “ G p2 ` δ; δq. The function θ1 is
increasing and we have θ1p0`q “ 0 and θ1p1q “ 0.3956 ¨ ¨ ¨ . Suppose λ1 ą 0 is an
exponent that satisfies the hypothesis H` below for ` “ 1, and let ε ą 0. Then for
q “ N or k2 sufficiently large, there exists a prime

p !ε q
2λ1

1`θ1pδq
`ε

with appq ď δ.

Remark 1.2. The convexity bound (Phragmén-Lindelöf principle) allows taking
λ1 “ 1

4 but better exponents, called subconvex exponents are known in both the
weight and the level aspects. For example, one may take λ1 “ 1

6 when N “ 1 by
a result of Jutila and Motohashi [15].

Theorem 1.3. For any δ P p0, 1s, let θ2pδq “ G pp1 ` δq2; 2δ ` δ2q. The function
θ2 is increasing when δ ď 0.5305 ¨ ¨ ¨ , and constant equal to 1 afterwards. We have
θ2p0`q “ 0, θ2p1{2q “ 0.9093 ¨ ¨ ¨ , θ2p1q “ 1. Suppose λ2 ą 0 is an exponent that
satisfies the hypothesis H` below for ` “ 2, and let ε ą 0. For any δ P r0, 1s, and
for q “ N or k2 sufficiently large, there exists a prime

p !ε q
4λ2

1`θ2pδq
`ε

with |appq| ď 1 ` δ.
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Remark 1.4. The convexity bound allows the choice λ2 “ 1
4 and currently this

is the best known exponent. Obtaining a subconvex estimate for the symmetric
square L-function in the level or the weight aspect is a challenging problem.

It turns out that showing the existence of primes p of small size in terms of
the conductor (i.e., weight and level) such that appq ě 0 is rather difficult. By
utilizing the fact that hypotheses H` holds true for 1 ď ` ď 5, we are able to
show the following result:

Theorem 1.5. There is a prime p ! k24N21 such that appq ě 0.

The results above are all obtained using a similar strategy and this is sum-
marized in Theorem 1.11 below. For some specific intervals, however, we obtain
better bounds by employing ad hoc techniques using L-functions as we now de-
scribe.

Theorem 1.6. For any ε ą 0, there is a prime p “ OεpkNq1`ε such that
appq ă 0.

Corollary. The least prime such that appq ‰ 0 is !ε pkNq1`ε, for any ε ą 0.

Remark 1.7. As the proof of the above theorem shows, the exponent 1 can be
replaced by 4λ2 and any subconvex estimate λ2 ă 1{4 for the symmetric square
L-function will lead to an improvement of the above result.

The next result relates the possibility of the initial coefficients at primes as-
suming extreme values with the size of Lp1, fq. For q “ Nk2, let

γ´ :“ lim inf
qÑ8

logLp1, fq

log log q
, γ` :“ lim sup

qÑ8

logLp1, fq

log log q
.

From the zero-free region of Lps, fq (See [11]), the standard techniques yield
´2 ď γ´ ď γ` ď 2. (1.3)

Theorem 1.8. For any δ, ε ą 0, the least prime p such that appq ą γ´ ´ δ is
Opqεq. Similarly, the least prime p such that appq ă γ` ` δ is Opqεq.

Remark 1.9. The bounds (1.3) seem to be the best known, and any improvement
would yield a non-trivial result in Theorem 1.8. The quality of the upper-bound
on p, namely Opqεq, compared to the above results, suggests that improving the
bounds (1.3) is a difficult task. Under the Riemann Hypothesis for Lps, fq, one
has the bounds

plog log qq´2 ! Lp1, fq ! plog log qq2,

at least in the case N “ 1 (see [23, Thm. 3] for a precise and stronger statement),
which yields conjecturally γ´ “ γ` “ 0. Furthermore, it is known that these
bounds hold for almost all forms (see [24, Cor. 2] for a precise statement).

Several authors investigated the smallest integer n such that apnq ă 0, see for
instance [13], [19], [21] or [25]. It follows from [25] that the least such n is Opq3{8q,
where q “ Nk2. A closer scrutiny of their proofs reveals that the integer n they
produce is either a prime or the square of a prime. Indeed, all the above works
make use of the contrast between the sizes of appq and app2q forced by the Hecke
relation appq2 ´ 1 “ app2q for primes p. Since we aim at localizing only appq’s,
the coefficients at primes, we cannot rely on such procedures. In fact, the two
methods we propose are reverse: from a localization on appq, we show that some
polynomial in appq has to be large for many primes p. This polynomial defines the
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value at p of a new function whose Dirichlet series we approximate with products
of Lps, sym` fq and it is by using the analytic properties of these latter that we
reach a contradiction. To find an integer n such that apnq ă 0, only the analytic
properties of Lps, fq are required.

Regarding bounds conditional on the Riemann Hypothesis, Ankeny [1] has
proved that for any non-trivial character χ mod q, if the Riemann hypothesis
is true for Lps, χq, then the least n such that χpnq ‰ 1 is Opplog qq2q. It is not
difficult to show that the analogous phenomenon holds in our setting:

Theorem 1.10. Assume that for all ` ě 1, the function Lps, sym` fq is entire
and satisfies the Riemann hypothesis. Then for any interval I Ď r´2, 2s of positive
measure, the least prime p such that appq P I satisfies p !I plog qq2.

Let us now state our general theorem depending on the hypothesis H`. Note
that this result implies Theorems 1.1, 1.3 and 1.5.

Theorem 1.11 (Generic theorem). Let pb`q1ď`ďL be non-negative integers, Let
κ ą 0 and F be real, and let I Ă r´2, 2s be such that

$

’

’

&

’

’

%

@x P r´2, 2s r I,
ÿ

1ď`ďL

b`U`px{2q ě κ ą 0,

@x P r´2, 2s,
ÿ

1ď`ďL

b`U`px{2q ě F,
(1.4)

where U` are the Chebyshev polynomials of the second kind. Then, on assuming
pH`q`ďL, the least prime p such that appq P I satisfies

log p

logN
ď

2
ř

` `b`λ`

1 ` G pκ ´ F ;κq
` ε, (1.5)

for any ε ą 0 and N large enough with respect to the weight k and ε; and
log p

log k
ď

2
ř

`p` ` εp`qqb`λ`

1 ` G pκ ´ F ;κq
` ε. (1.6)

for any ε ą 0 and k large enough with respect to the level N and ε. Here εp`q “
1´p´1q`

2 P t0, 1u is the parity of `.

The intervals rα, βs for which there is a linear combination with non-negative
coefficients of U1, . . . , U8 which takes positive values outside rα, βs delimit a
curve in pα, βq, whose exact determination is an interesting question (without
the non-negativity condition, the analogue for U1, . . . , U4 was solved in Appen-
dix A of [22]). Between this curve and the diagonal α “ β, Theorem 1.11 yields
an upper-bound on log p

log q , which gets smaller as one moves away from the diagonal.
This is represented in Figure 1, which was obtained by case-by-case analysis of
all linear combinations with

ř

`ď8 `b` ď 42. On the left, darker colors indicate a
larger upper-bound.

Theorem 1.11 should be compared with Theorem 1.8 of [22]. In both cases,
we are given an interval I Ă r´2, 2s, and we are looking for the least prime p such
that appq P I. In Theorem 1.8 of [22], the authors obtain an exponent depending
on the quality with which the indicator function 1I can be minorized by a linear
combination of U0, U1, U2, . . . . In Theorem 1.11, we obtain an exponent depend-
ing on the quality with which the complementary indicator function 1r´2,2srI is
minorized by a linear combination with non-negative coefficients of U1, U2, . . . . An
inconvenient of our method is that there is no clear description of the allowable
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Figure 1. Upper-bound on log p
logN in Theorem 1.11 for I “ rα, βs.

intervals I. Theorems 1.1-1.5 indicate that, when it can be applied, the method
described here yields non-trivial numerical results.

Notation. Our notation is quite standard. We follow the usual practice of de-
noting by p an arbitrary prime and by ε an arbitrarily small positive real number
which need not be the same in every occurrence. For any set X Ă R and maps
F : X ÞÑ C and G : X ÞÑ r0,8q, we write

F pxq ! Gpxq or F pxq “ OpGpxqq

if there exists a C ą 0 such that |F pxq| ď CGpxq for all x P X. Sometimes, the
implied constant C depends on some parameters and this dependence is shown in
the subscript. For example, often the implied constant depends on the parameter
ε, an arbitrarily small positive real number and we display this dependence by
writing !ε or Oε. Sometimes, the dependence is not shown when it is clear from
the context in order to avoid making the notation too cumbersome. By η̌, we
denote the Mellin transform of a function η:

η̌psq “

ż 8

0
ηptqts´1dt. (1.7)
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2. Background on modular forms and L-functions

2.1. Symmetric power L-functions. For a primitive form f , as in the intro-
duction, its normalized coefficients af ppq “ appq can be written as

appq “ αf ppq ` βf ppq

where, for p - N , αf ppq “ 1{βf ppq and both are complex numbers of absolute
value 1. For each ` P N, the `-th symmetric power L-function of f is defined, for
<s ą 1, by

Lps, sym` fq “
ź

p

ź

0ďjď`

`

1 ´ αf ppq`´jβf ppqj{ps
˘´1

“:
ÿ

ně1

asym` f pnq

ns
. (2.1)

We have sym1 f “ f and it is convenient to set sym0 f “ 1 so that Lps, sym0 fq “

ζpsq. It is expected from a general conjecture of Langlands [20] that for every `,
there is a cuspidal automorphic representation of GL``1pAQq that corresponds to
the L-function Lps, sym` fq. For 1 ď ` ď 8, this was shown in [7] (for ` “ 2), [17]
(for ` “ 3), [18, 16] (for ` “ 4) and [4, 5] (for 5 ď ` ď 8). When N is squarefree,
this has been announced for all ` ě 0 in [28].

Following [14, Eq.(5.5)]), we define the analytic conductor of Lps, sym` fq as

qps, sym`pfqq “ N `p|t| ` 2q``1k``εp`q, (2.2)

with εp`q “
1´p´1q`

2 being 1 or 0 according as ` is odd or even, as in the statement
of Theorem 1.11.

Once we know that a symmetric power L-function comes form an automor-
phic representation, the analytic continuation and functional equation for that L-
functions follows from [8] and thus the Phragmén-Lindelöf convexity principle (or
the approximate functional equation [14, eq. (5.20)]) implies that for 1 ď ` ď 8,
the hypothesis H` holds with the value λ` “ 1{4, even for δ “ 0. This is known
as the convexity bound. Giving a bound on an L-function that is stronger than
the convexity bound is a challenging problem which has been solved in a few
cases (see [27] and the references therein) and this is known as the subconvexity
problem. Sometimes we are interested in the size of the L-functions in terms of
only the size of the variable t, or the weight k or the level N . A result of Jutila
and Motohashi [15] says that taking λ1 “ 1{6 is permissible in the weight and
the t-aspect. We further define

qpsym`pfqq :“ N `k``εp`q. (2.3)

In particular, qpfq “ Nk2 and qpsym2pfqq “ N2k2. Note that in the weight
aspect, qpfq and qpsym2pfqq are of the same order.

For the coefficients of the symmetric `-th power L-function of f , we have the
following relation for every prime p:

asym` f ppq “ a
`

p`
˘

“ U`pcos θppqq “ U`pappq{2q “
sinpp` ` 1qθppqq

sin θppq
, (2.4)

where U` is the Chebyshev polynomial of second kind, whose properties we recall
next.

2.2. Chebyshev polynomials of the second kind. We recall that the Cheby-
shev polynomial of second kind pU`q`ě0 are defined by

U0 “ 1, U1 “ 2x, U``1 ´ 2xU` ` U`´1 “ 0. (2.5)
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These polynomials form an orthonormal basis in the space of polynomials on the
interval r´1, 1s relative to the Hermitian product

xf, gy “

ż 1

´1
fpxqgpxq 2

π

a

1 ´ x2dx. (2.6)

The first few are given by
U2 “ 4x2 ´ 1,

U3 “ 8x3 ´ 4x,

U4 “ 16x4 ´ 12x2 ` 1,

U5 “ 32x5 ´ 32x3 ` 6x,

U6 “ 64x6 ´ 80x4 ` 24x2 ´ 1,

U7 “ 128x7 ´ 192x5 ` 80x3 ´ 8x,

U8 “ 256x8 ´ 448x6 ` 240x4 ´ 40x2 ` 1.

The last equality in Eq. (2.4) comes from the relation

Unpcos θq “
sinppn ` 1qθq

sin θ
.

3. Auxiliary Lemmas

3.1. Convolutions.

Lemma 3.1. Assume pH`q1ď`ďL. Let L ě 1 be an integer and let pb`q0ď`ďL be a
collection of non-negative integers. Then, we have the equality

ź

p

ˆ

1 `

ř

` b`app`q

ps

˙

“
ź

0ď`ďL

Lps, sym` fqb`Hpsq,

where H is a function that is holomorphic and bounded by a constant in the region
<s ě 1

2 ` ε for any ε ą 0.

Proof. This follows easily by comparing the p-th Euler factors. �

We recall that, in the half-plane of absolute convergence, we have

Lps, fq “
ź

p

ˆ

1 ´
appq

ps
`

1

p2s

˙´1

“
ź

p

ˆ

1 ´
αppq

ps

˙´1ˆ

1 ´
βppq

ps

˙´1

(3.1)

as well as

Lps, sym2 fq “
ź

p

ˆ

1 ´
appq2 ´ 1

ps
`

appq2 ´ 1

p2s
´

1

p3s

˙´1

. (3.2)

3.2. Averages of multiplicative functions. We quote Theorem 21.2 of [29]
which follows an idea of Wirsing [33].

Lemma 3.2. Let f be a non-negative multiplicative function and κ be a non-
negative real parameter such that

$

’

’

’

’

&

’

’

’

’

%

ÿ

pě2,νě1
pνďQ

f
`

pν
˘

log
`

pν
˘

“ κQ ` OpQ{ logp2Qqq pQ ě 1q,

ÿ

pě2

ÿ

ν,`ě1,
pν``ďQ

f
`

p`
˘

f
`

pν
˘

log
`

pν
˘

!
a

Q,
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then we have
ÿ

dďD

fpdq “ κC ¨ D plogDq
κ´1

p1 ` op1qq,

where
C “

1

Γpκ ` 1q

ź

p

"ˆ

1 ´
1

p

˙κ
ÿ

νě0

f
`

pν
˘

*

. (3.3)

Lemma 3.3. Under the same hypotheses of Lemma 3.2 we have, for any contin-
uously differentiable function η with

ş1
0 ηpuqdu ‰ 0:

ÿ

dďD

fpdqηpd{Dq “ κCp1 ` op1qq

ż D

2
plog uqκ´1ηpu{Dqdu

as D ÝÑ 8.

The condition on η is obviously satisfied if, as will be the case for us, η is
non-negative with support inside the interval r0, 1s.

Proof. Using Lemma 3.2, we find that
ÿ

dďD

fpdqηpd{Dq “
ÿ

dďD

fpdqηp1q ´
ÿ

dďD

fpdq

ż 1

d{D
η1ptqdt

“
ÿ

dďD

fpdqηp1q ´

ż 1

0

ÿ

dďtD

fpdqη1ptqdt

“ κηp1qC ¨ D plogDq
κ´1

´

ż D

2
κCuplog uqκ´1η1pu{Dqdu{D ` opDplogDqκ´1q

as D Ñ 8. Hence, by partial summation,
ÿ

dďD

fpdqηpd{DqpκCq´1 “

ż D

2
pκ ´ 1 ` log uqplog uqκ´2ηpu{Dqdu ` opDplogDqκ´1q

“

ż D

2
plog uqκ´1ηpu{Dqdu ` opDplogDqκ´1q.

However we also have
ż D

2
plog uqκ´1ηpu{Dqdu “ O

´

ż D{ logD

2
plog uqκ´1du

¯

`

ż D

D{ logD
plog uqκ´1ηpu{Dqdu

“ O
`

DplogDqκ´2
˘

` DplogDqκ´1

ż 1

1{ logD

´

1 `
log v

logD

¯κ´1
ηpvqdv

“ O
`

DplogDqκ´2
˘

` DplogDqκ´1

ż 1

1{ logD
ηpvqdv

„

´

ż 1

0
ηpvqdv

¯

DplogDqκ´1

as D Ñ 8, since
ş1
0 ηpuqdu ‰ 0. In the third line we have used the uniform

estimate p1 ` plog vq{ logDqκ´1 “ 1 ` Oplogp1{vq{ logDq for 1{ logD ă v ă 1.
Hence our claimed estimate

ÿ

dďD

fpdqηpd{Dq “ κCp1 ` op1qq

ż D

2
plog uqκ´1ηpu{Dqdu
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follows. �

4. A general average bound

Lemma 4.1. Let L P Ną0, and assume pH`q1ď`ďL. Let pb`q0ď`ďL be a collection
of non-negative integers. Given a primitive form fpzq “

ř

ně1 apnqepnzq as in
the introduction, let us define a multiplicative function hf by the equality

ÿ

n

hf pnq

ns
“

ź

p

ˆ

1 `

ř

` b`app`q

ps

˙

Then hf is supported on square-free integers and there exists a polynomial PL of
degree at most b0 ´ 1 such that, for any ε ą 0, we have

ÿ

ně1

hf pnqηpn{Xq “ XPLplogXq ` O
´

X
1
2

`ε
ź

1ď`ďL

qpsym`pfqqb`λ``ε
¯

(4.1)

for any compactly supported twice continuously differentiable non-negative func-
tion η.

Proof. Let us denote by S the left-hand side of (4.1). By taking Mellin transforms
(e.g. p.90 of [14]), we get

S “
1

2iπ

ż 2`i8

2´i8
Xsη̌psqs

ÿ

ně1

hf pnq

ns
ds.

The fact that η is twice continuously differentiable ensures us that its Mellin
transform verifies η̌psq ! 1{p1 ` |s|2q uniformly in any closed vertical strip in
the half plane <s ą 0. Lemma 3.1 gives us an expression for the Dirichlet series
ř

ně1 hf pnq{ns from which we see that we can shift the line of integration to
<s “ 1

2 ` ε obtaining that the error term is at most

O
´

X
1
2

`ε
ź

1ď`ďL

qpsym`pfqqb`λ``ε
¯

,

by our hypothesis pH`q1ď`ďL and the convexity principle. The residue at 1 gives
the claimed main term, and the lemma follows readily. �

5. A general Lemma around Vinogradov’s trick

Lemma 5.1. Let g be a real-valued multiplicative function supported on the
squarefree integers. We assume further that gppq ě F for every prime p, and
that for every prime p ď P , we have gppq ě κ ą 0. Let η be a non-negative,
continuously differentiable function with support within r0, 1s such that

ş1
0ηpvqdv “

1. We have, for M “ P θ for some θ P r0, 1s,
ÿ

ně1

µ2pnqgpnqη

ˆ

n

PM

˙

ě p1 ` op1qqκCMP plogMP qκ´1
`

1 ´ pκ ´ F qF pθ;κq
˘

where C is given by (3.3) and F is defined in (1.1)

The factor µ2pnq is only here to remind the reader that the variable n is
restricted to squarefree values. It can be omitted!

Proof. We set

S “
ÿ

ně1

gpnqη

ˆ

n

PM

˙

. (5.1)
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By our hypotheses, we find that

S “
ÿ

nďPM,
P`pnqďP

gpnqη

ˆ

n

PM

˙

`
ÿ

PăpďPM

gppq
ÿ

nďPM{p

gpnqη

ˆ

pn

PM

˙

ě
ÿ

nďPM,
P`pnqďP

gpnqη

ˆ

n

PM

˙

` F
ÿ

PăpďPM

ÿ

nďPM{p

µ2pnqκωpnqη

ˆ

pn

PM

˙

ě
ÿ

nďPM

µ2pnqκωpnqη

ˆ

n

PM

˙

` pF ´ κq
ÿ

PăpďPM

ÿ

nďPM{p

µ2pnqκωpnqη

ˆ

pn

PM

˙

.

Here P`pnq denotes the greatest prime divisor of n. We appeal to Lemma 3.3
with fpnq “ µ2pnqκωpnq and get

S{pCκq ě p1 ` op1qq

ż PM

2
plog uqκ´1η

´ u

PM

¯

du

` pF ´ κ ` op1qq
ÿ

NăpďPM

ż PM{p

2
plog uqκ´1η

´ up

PM

¯

du.

Note that the change of variable vPM “ u shows that
ż PM

2
plog uqκ´1η

´ u

PM

¯

du “ PMplogPMqκ´1

ż 1

0
ηpvqdvp1 ` op1qq.

We use this estimate with M replaced by M{t and the prime number theorem to
infer that

ÿ

NăpďPM

ż PM{p

2
plog uqκ´1η

´ up

PM

¯

du

“ PMp1 ` op1qq

ż 1

0
ηpvqdv

ż PM

N

´

log
PM

t

¯κ´1 dt

t log t

while this last integral equals, with the change of variable v “ pPMqh and M “

N θ,
ż M

1

plog vqκ´1dv

vplogpPMq ´ log vq
“ plogPMqκ´1

ż θ{p1`θq

0

hκ´1dh

1 ´ h
.

Recall that
ş1
0 ηpvqdv “ 1. We thus find that

p1 ` op1qqS

CκPMplogPMqκ´1
ě 1 ` pF ´ κq

ż θ{p1`θq

0

hκ´1dh

1 ´ h

“ 1 ´ pκ ´ F qF pθ, κq.

�

6. Proof of Theorems 1.11, 1.1, 1.3, 1.5

Suppose appq R I for every p ď P . Under the assumptions of Theorem 1.11,
let θ P r0, 1s be such that

1

κ ´ F
ą F pθ;κq; (6.1)
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for instance, we may take θ “ maxpG pκ ´ F ;κq ´ ε, 0q. Consider the sum

S “
ÿ

ně1

hf pnqηpn{PMq

where M P r1, P s. From the upper and the lower bound of S as given by
Lemma 4.1 and 5.1 respectively and noting that b0 “ 0, we obtain,

pPMq
1
2

`ε
ź

1ď`ďL

qpsym`pfqqb`λ``ε " PM.

Therefore, with M “ P θ for some θ P r0, 1s satisfying (6.1), we have

P !k N
2

ř

` `b`λ`
1`θ

`ε.

This leads to the estimate (1.5) and the other estimate (1.6) is proved in a similar
manner.

Let us inspect what this gives to us under the convexity bound for λ` “ 1{4.
Since the quantity 2

ř

`ě1 `b`λ` takes all the values that are half-positive integers,
we may inspect the first of them one by one. As we did above, we focus on the
level N .

First case p1{2q
ř

`ě1 `b` “ 1{2. This is only possible with the choice b1 “ 1,
all other b`’s being 0. We have

ř

1ď`ďL b`U`px{2q “ x which is positive when
x “ appq ą 0. On assuming appq ě δ when p ď P , we see that we may take κ “ δ
and F “ ´2 and get, for N ě N0pεq,

logP

logN
ď

2λ1

1 ` G p2 ` δ; δq
` ε. (6.2)

Hence Theorem 1.1.

Second case p1{2q
ř

`ě1 `b` “ 1. This is only possible with the choice b2 “ 1,
all other b`’s being 0. We have

ř

1ď`ďL b`U`px{2q “ x2 ´ 1 which is positive when
x “ appq R r´1, 1s. On assuming |appq| ě 1 ` δ when p ď P , we see that we may
take κ “ 2δ ` δ2 and F “ ´1 and get, for N ě N0pεq,

logP

logN
ď

4λ2

1 ` G p1 ` 2δ ` δ2; 2δ ` δ2q
` ε. (6.3)

Hence Theorem 1.3.

Finding non-negative values. Let I “ r0, 2s. A numerical computation found
the coefficients pb`q0ď`ď5 “ p0, 0, 3, 5, 4, 1q, which satisfy (1.4) with κ ě 1{3
and F “ ´10. Then Theorem 1.5 follows from the bounds (1.5) and (1.6).

7. Proof of Theorem 1.6

Let η : R` Ñ R` be smooth, compactly supported and such that 1r0,1s ě η ě

1r1{3,2{3s, let ε ą 0, and consider

T pXq “
ÿ

n

µ2pnqapnqηpn{Xq pX ě 1q.

By Lemma 4.1, we get
T pXq ! X1{2pk2Nq1{4`ε. (7.1)

Suppose that appq ě 0 for all primes p ď X. If the inequality
ÿ

n:
apnqě1

µ2pnqapnqηpn{Xq ě X1´ε (7.2)
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holds then we easily have
T pXq ě X1´ε. (7.3)

Otherwise, suppose that (7.2) does not hold. We write

T pXq “
ÿ

n:
0ďapnqă1

µ2pnqapnqηpn{Xq `
ÿ

n:
apnqě1

µ2pnqapnqηpn{Xq

ě
ÿ

n:
0ďapnqă1

µ2pnqapnq2ηpn{Xq `
ÿ

n:
apnqě1

µ2pnqapnqηpn{Xq

“
ÿ

n

µ2pnqapnq2ηpn{Xq `
ÿ

n:
apnqě1

µ2pnqapnqp1 ´ apnqqηpn{Xq.

Now the last sum is OpX1´ε{2q by Deligne’s bound |appq| ď 2 and the negation
of (7.2). The first sum can be handled by Rankin-Selberg method (Lemma 4.1)
and is " Lp1, sym2 fqX ` OpX1{2pk2N2q1{4`εq. Thus we have, using the lower
bound Lp1, sym2 fq " 1{ logpkNq due to Hoffstein and Lockhart [10],

T pXq " X{ logpkNq ` OpX1{2pk2N2q1{4`εq ` OpX1´ε{2q. (7.4)
One of the equations (7.3) and (7.4) must hold and either, in conjunction with

equation (7.1), imply the theorem.

8. Proof of Theorem 1.8

By equation (3) of [30], the Deligne bound |appq| ď 2 and Mertens’ theorem
(see [14, Eq. (2.15)]), we have

logLp1, fq “ Oεp1q `
ÿ

pďqε

appq

p
,

and therefore
ÿ

pďqε

1

p

´

appq ´
logLp1, fq

log log q

¯

“ Oεp1q.

However, if we had appq ă γ´ ´ δ for p ď qε, then we would also have
ÿ

pďqε

1

p

´

appq ´
logLp1, fq

log log q

¯

ď Oε,δp1q ´
δ

2
log log q,

which is a contradiction for q large enough, and therefore there must be a prime p ď

qε such that appq ě γ´ ´ δ. An identical argument shows the existence of p ď qε

such that appq ď γ` ` δ.

9. Conditional bounds: proof of Theorem 1.10

By the Stone-Weierstrass theorem, the fact that pU`q forms a basis of RrXs,
and the relation (2.4), we may find L ě 1 and real coefficients b0, . . . , bL depending
on I, with b0 ą 0, such that

ÿ

pďx

1pappq P Iqp1 ´
p
xq log p ě

L
ÿ

`“0

b`
ÿ

pďx

asym` f ppqp1 ´
p
xq log p. (9.1)

By Chebyshev’s estimate, the contribution of the term ` “ 0 is

b0
ÿ

pďx

p1 ´
p
xq log p "I x
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with an absolute constant. To show that the right-hand side of (9.1) is positive
for some x “ OIpplog qq2q, it therefore suffices to show that for all integer ` ě 1
and all real x ě 1, we have

ÿ

pďx

asym` f ppqp1 ´
p
xq log p “ O`px

1{2 log qq.

This is an immediate consequence of the explicit formula [14, eq. (5.33)] (with
an additional smoothing, as in [26, eq. (13.28)]) along with classical zero density
estimates [14, Theorem 5.8].
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