ED 184 Mathématiques et informatique de Marseille
Institut de Mathématiques de Marseille (UMR7373)

Memoire présente pour obtenir
I’habilitation a diriger des recherches

Discipline : Mathématiques

Sary DRAPPEAU

Indépendance statistique et lois limites
pour quelques objets arithmétiques

Statistical independence and limit laws
for some arithmetical objects

Defended Septembre 28" 2023 in front of the jury composed of :

Valérie BERTHE CNRS Referee
Valentin BLOMER Bonn Universitat Referee
Régis DE LA BRETECHE Université Paris Cité

Etienne FOUVRY Université Paris Sud

Florent JOUVE Université de Bordeaux

Kaisa MATOMAKI Turun yliopisto Referee
Philippe MICHEL Ecole Polytechnique Fédérale de Lausanne

Joél RIVAT Université d’Aix-Marseille

Emmanuel ROYER Université Clermont-Auvergne et CNRS

Numeéro national de thése/suffixe local : 2019AIXM0001/001ED62






Thanks

Je suis tout d’abord redevable & Joél Rivat, Etienne Fouvry et Régis de la Bre-
téche pour leurs subtiles incitations, leurs précieux conseils et leurs encourage-
ments durant tout le processus de HDR.

I'm grateful to Valérie Berthé, Valentin Blomer and Kaisa Matomaki for their
time, and sincerely honoured that they agreed to report on the manuscript.

Je remercie vivement Florent Jouve, Philippe Michel et Emmanuel Royer pour
avoir accepté de participer au jury.

Je remercie encore Mme Tinel pour toute son aide au bureau des HDR.

Faire des mathématiques serait une activité bien morne si 'on ne pouvait la
vivre avec les collegues. Je remercie donc toutes les personnes avec qui j’ai pu
partager I'envie de comprendre, 'enthousiasme et '’émerveillement, que cela ait
mené a un papier ou non. Je remercie en particulier Olivier Ramaré pour d’in-
nombrables discussions éclairantes sur la théorie analytique des nombres; et
Brigitte Vallée pour avoir pris le temps de donner de nombreuses explications
sur ses travaux.

Je remercie enfin mes collegues de 'I2M pour 'atmosphere conviviale, qui
fait que ca vaut largement la peine de prendre le B1 en heure de pointe ou de
cohabiter avec des marteaux-piqueurs.



Résumé

Ce mémoire présente les themes sur lesquels ont porté mes travaux de re-
cherche depuis mon arrivée a I'université d’Aix-Marseille en 2015. Leur problé-
matique commune est de mettre en évidence des comportements statistiques
réguliers dans des familles d’objets arithmétiques naturels : les fonctions multi-
plicatives ou additives, et les valeurs centrales de certaines familles de fonctions
L.

La premiere partie concerne une question centrale en théorie multiplicative
des nombres : celle d’estimer la corrélation des valeurs f(n) et g(n+1), ot fetg
sont deux fonctions multiplicatives, notamment lorsque I'une des deux fonctions
est la fonction « nombre de diviseurs ». Ce probleme est naturellement lié a la
répartition de certaines suites dans les progressions arithmétiques, et trouvent
des applications a d’autres questions arithmétiques, par exemple les zéros de
petite hauteur des fonctions L de Dirichlet. Les majorations de sommes d’expo-
nentielles algébriques sont un outil crucial dans cette partie du mémoire.

La seconde partie concerne certaines fonctions f : Q — C nommées par
Zagier « formes modulaires quantiques », caractérisées par certaines symétries
analogues a celles des formes modulaires. Mes collaborations sur ce sujet ont
consisté d’une part a établir ces relations de modularité quantiques dans certains
cas : celui de tordues additives de fonctions L de Dirichlet, et celui de sommes de
symboles de Pochhammer ; et d’autre part a les utiliser pour en déduire, par des
méthodes de systemes dynamiques, I'existence de lois limites pour les valeurs
de f aux nombres rationnels ordonnés par dénominateurs croissants.

Mots clés : Fonctions multiplicatives, nombres premiers, progressions arith-
métiques, sommes de Kloosterman, formes modulaires, formule de Kuznetsov,
tordue additive, forme modulaire quantique, loi limite, invariant de Kashaev.



Abstract

This manuscript presents the themes of my research works in Aix-Marseille
university since 2015. Their common theme is the search for simple statisti-
cal behaviour among families of natural arithmetical objects: multiplicative or
additive functions, functions defined in terms of numeration systems (decimal,
continued fractions...) and central values of L-functions.

The first part concerns a key question in multiplicative number theory: to esti-
mate the correlation of values of f(n) and g(n + 1), where f and g are two mul-
tiplicative functions, with an emphasis on the case of the divisor function. This
naturally involves bounds on algebraic exponential sums, and leads to applica-
tions in various problems, all linked in some way to the distribution of certain
sequences in arithmetic progressions.

The second part concerns maps f : Q — C called by Zagier “quantum modular
forms”, which satisfy certain symetries analogous to those satisfied by modular
forms. In several collaborations, we established the modular quantum behaviour
in some cases related to additive twists of central L values, or to Pochhammer
symbols, and we deduced through methods from dynamical systems the exis-
tence of limit laws for values of f along rationals ordered by denominators.

Keywords: multiplicative functions, prime numbers, arithmetic progressions,
Kloosterman sums, modular form, Kuznetsov formula, additive twist, quantum
modular form, limit law, Kashaev invariant
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Introduction

This thesis presents the results I've obtained since 2015 in the course of my
research in analytic number theory. Their commun setup is to find limit laws
among families of natural arithmetical objects : multiplicative or additive func-
tions, functions defined in terms of numeration systems (decimal, continued frac-
tions...), central values of families of L-functions.

The first part of the thesis is centered on the question of how to estimate
asymptotically the correlation sum

C(f,g;x) =) f(n)g(n+1)

n<x

when f and ¢ are multiplicative functions. Heuristically, we expect the factori-
zations of n and n + 1 to be statistically independent on average over n. We
therefore expect C(f, g; x) to be comparable to the product of the averages of f
and g up to x, which means

C(f.g;x) =27 'C(f,1;2)C(1, g; ).

We will focus on the special case when f(n) = 7(n) = X, 1, the divisor
function, and when the values ¢g(p) have a simple description. This case is of par-
ticular importance because it is close to the threshold past which the analytical
techniques currently known are ineffective. The most significant progress on this
question were made in the 1980’s, which the development of techniques from
automorphic forms theory to study certain algebraic exponential sums which
naturally appear.

In Section 1.1, we present a generalization of results of Deshouillers and Iwa-
niec on the Fourier coefficients of modular forms, and bounds on averages of
Kloosterman sums which follows by the Kuznetsov trace formula. These esti-
mates are then used to deduce an arithmetical result on bounds on average over
primes of Kloosterman sums under the existence of Siegel zeroes, obtained with
J. Maynard.

In Section 1.2, we return to the estimation of C(7, g; z), and we present works
which answer two natural questions : how the location of zeroes of Dirichlet L-
functions influence the error term in the estimation of C'(7,¢;z); and a simple
characterization of arithmetical functions g for which we are currently able to
estimate precisely the correlation sum C(r, g;z). The first work relies on the



bounds on Kloosterman sums mentioned above. The second result, obtened with
B. Topacogullari, depends on new combinatorial decompositions for certain mul-
tiplicative functions.

In Section 1.3, we present a work with K. Pratt and M. Radziwilt in which
we study the density of zeroes of Dirichlet L-functions near the real axis, on
average over both the character and the modulus. The bounds for Kloosterman
sums refered to above will allow us to estimate this density for test functions
whose Fourier transform has a support larger than the range permitted by the
large sieve inequalities.

Lastly, in Section 1.4, we present a work with R. de la Breteche on the distri-
bution of values of quadratic polynomials in arithmetic progressions, which also
relies on the bounds for Kloosterman sums refered to above. As a corollary of this
work, we improved a bit on a result of Deshouillers and Iwaniec on the largest
prime divisor of n? + 1.

The second part of the thesis is centered on the existence of limit laws for
certain maps naturally defined on the rationals.

The first result on this second part concerns the distribution of values of
the maps f : Q — C such that for any homography v € PSLy(Z), the maps
h+(z) := f(z) — f(yz) are regular, in a certain precise sense. Such maps were cal-
led by Zagier “quantum modular forms” (of weight 0 and level 1) because some
examples came from quantum invariants in knot theory. By using the Euclid al-
gorithm and dynamical properties of the Gauss map, we show under weak hypo-
theses on the maps h.,, that the values f(x) for x varying among rational numbers
of denominators up to () tend to distribute along a stable low as () — oc. This ex-
tends work of Baladi and Vallée regarding the hypotheses on h.. This formalism
allows us to obtain a limiting law for rational values = sorted by denominators
of the Estermann’s function, which is the value at s = 1/2 of the “additive twist”
of the function ((s)?,

D(s,z):=>_ Lzl)ezmm:.
n>1 1
This series does not have an Euler product ; however, the map = — D(1/2,z) is a
quantum modular form for which our results apply. The method involves mostly
arguments from dynamical systems, and the arithmetic is only invoked to prove
the quantum modularity of the map z — D(3, z).
Our second result concerns the ¢g-analogue of the Pochhammer symbol,

n

(@n =] —=1¢"),

r=1

when ¢ is a root of unity. We show that the maps which to » € Q associate respec-
tively (e(x)), and (e(z)), (where h/k = (h~' mod k)/k (mod 1)) each satisfies,
for v € PSLy(Z), a form of modularity which relates their values at = and ~vz.



These two formulas are close relatives of the modularity of the Dedekind » func-
tion. These formulas are consistent with the Zagier modularity conjecture on
Kashaev invariants of hyperbolic knots. We show, using these formulas, that the
Kashaev invariatns of the figure-eight knot

Juo(@) = [(e(@))nl”

n>0

have, for asymptotically almost all rational x (in a precise sense), an asympto-
tic behaviour which can be expressed in simple terms of the continued fraction
expansion of x.



1 Exponential sums and statistical
independence of arithmetic
functions

1.1 Kloosterman sums

1.1.1 Bounds on average

For all ¢ € Ny and a,b € Z/qZ, define the Kloosterman sum (Kloosterman
1927) as

S(a,b;q) :== Z Xe(CL77J+l)n—1>

ne(Z/q7Z) q

where e(x) := ¢, and n~! denotes an inverse of n modulo q. We obviously
have the trivial bound

1S(a,b;q)| < »(q).

Any improvement on this bound says something on the pseudorandomness of
the sequence (n~') as n varies in (Z/qZ)*. In full generality, we have the Weil
bound (Weil 1948) : for any ¢ > 0,

1S(a,b;9)] << ¢*™,  ((a,b,q) = 1)

where (a, b, ¢) denotes the gcd. The exponent 1/2 is optimal. If a, b are non-zero
and fixed, we expect to be able to reach additionnal compensations in sums
over q of S(a,b,q). The first result of this type is due to Kuznetsov (Kuznetsov
1981), and asserts that for any € > 0 and (a,b) € Z?\ 0,

S(a,b;
Z (a,b;q)

<<€,a,b xl/ﬁ-‘rs'
q<z q

This path has been developed in a systematic way by Deshouillers and Iwaniec
(Deshouillers ; Iwaniec 1982a) (see also (Iwaniec 1982)). These ideas have pros-
pered and contributed to some of the most precise results in modern analytic
number theory (Bombieri; Friedlander ; Iwaniec 1986 ; Young 2011 ; Pitt 2013;
Bettin; Bui; Li et al. 2020 ; Pratt; Robles ; Zaharescu et al. 2020 ; Assing ; Blomer ;
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Li 2021 ; Maynard 2020).
The results of Deshouillers-Iwaniec (Deshouillers; Iwaniec 1982a) are about
exponential sums of the following shape :

ST e ().

where (3, ;) is a finitely supported sequence, and g is a smooth compactly sup-
ported function. The case when 5, = 1 if n = r = s = 1 and 0 otherwise,
which means that the sums runs in effect only over ¢ and d, corresponds to the
Kloosterman sums case considered by Kuznetsov (Kuznetsov 1981), upon using
Poisson summation on the variable d. The quintuple sum above is a natural gene-
ralization to a realistic setup, where the “smooth” variables ¢ and d are perturbed
by multiplicative convolution.

The following result generalizes Theorem 12 of (Deshouillers ; Iwaniec 1982a).
It was proved in (Drappeau 2017), and then made more precise in (Drappeau;
Pratt; Radziwilt 2022).

Théoréme 1 (Drappeau 2017). Let C, D, N, R, S > 1 and q, co, dy € N with (q, cody) =
1. Let (bnrs) be a sequence supported in [1,N] x [R,2R] x [S,2S] " N®. Let g :
R — C be a smooth function compactly supported in [C,2C] x [D,2D] x (R*)?
which satisfies the bound

3m+w+w+m+%g

0c¥19dv2 Onvs OrvsJsvs

(e, d,n, 7, 8) Koy wpwswaws 1€ A2 B Vg5 780 (1.1)

for some g > 0 and all v; > 0. Then

SC

Z Z Z Z anmsg(c, d,n,r, s)e <nr_d>
c 4 nm T s

c=cp et d=dp mod q
(grd,sc)=1

<<E,Eo (qCDNRS)E+O(EO)q3/2K(C7 D7 N? R7 S) HbN,R,SH%

where |[by,r,sl13 = 2 \bn,r,3|2, and

K(C,D,N,R,S)*=qCS(RS + N)(C + RD)

1.2
+CYDS((RS+ N)R)'"™(1+ £5)" " + D°NR. (:2)

Note that in a recent paper, Assing, Blomer and Li (Assing; Blomer; Li 2021)
prove a result which generalizes Theorem 12 of (Deshouillers; Iwaniec 1982a)
in another direction, linked to the uniformity in n.

The main difference between theorem 1 and (Deshouillers; Iwaniec 1982a,
Theorem 12) is the fact that the variables ¢, d, attached to a smooth weight, can
be restricted to arithmetical progressions. The main idea which makes this pos-
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sible was introduced by Blomer and Mili¢evi¢ (Blomer ; Milicevi¢ 2015) : it is to
exploit the possibility of varying the central character of the automorphic forms
for I'y(¢) underlying the analysis in (Deshouillers; Iwaniec 1982a). The success
of the method relies on a suitable choice of Poincaré series, the Fourier expansion
of which around well-chosen cusps will spawn the desired Kloosterman sums.
The usefullness of this setup was confirmed in many recent works on modular L
functions, where the Kuznetsov formula plays a role : let us cite (Kiral; Young
2019), (Petrow ; Young 2020) and (Zacharias 2019).

A difference which is less essential is the dependence in 6, which is made expli-
cit, whereas the bound 6 < 1/4 from Selberg was used in (Deshouillers ; Iwaniec
1982a). This only affects the second term in (1.2). In most of the applications,
this term is not the limiting one, but this is not systematically the case, as we will
see in theorem 6 below.

Due to bounds of the type of theorem 1, Kloosterman sums play a prominent
role in analytic number theory. It would be very desirable to have at our dispo-
sal bounds of the same quality for other exponential sums, such as Birch sums,
hyper-Kloosterman sums, or exponential sums whose phase parametrizes solu-
tions to n®> = 2 mod p. Recent works on such a setup was done by Buttcane,
see (Buttcane 2022).

1.1.2 Average value along prime numbers and Siegel zeroes

The work of Blomer and Mili¢evi¢ (Blomer ; Milicevi¢ 2015), which we refered
to above, allows one to bound the sums

> x(@)S(a,b;q), (1.3)

q<z

in which y is a Dirichlet character. It is natural to wonder if the extra flexibi-
lity allowed by the character y could give additional arithmetic applications We
would be particularly happy to be able to prove the following statement,

7S(a’b;p)lox og
%; 7 = o(x/logx), (1.4)

where p denotes a prime number.

The question (1.4) is still wide open. It would follow from the “horizontal”
Sato-Tate conjecture, made by Katz (Katz 1980). In 2007, Fouvry and Michel (Fou-
vry ; Michel 2007) have obtained a non-trivial bound when the primality condi-
tion is relaxed to the condition that n belongs to the set P, of integers having
at most k prime divisors, for some fixed k. Their method has been the subject
of many improvement, and the best known value of an admissible k is £ = 7 by
Xi (Xi 2018).

12



The possibility to exploit the dependence in the character x in (1.3) allows for
an application, should there exist a Dirichlet character which takes the value —1
abnormally often on prime numbers. More precisely, we know that there is a
constant ¢ > 0 such that for all () > 2 and each Dirichlet character y primitive
modulo ¢ < @, the inequality

L(1,x) > ¢/logq

holds with the exception of at most one such character y, which is then quadratic.
We conjecture that no such exceptions exist, and in fact the Riemann hypothesis
generalized to Dirichlet L functions implies the inequality L(1, x) > 1/loglogq;
but no substantial progress has been made on this question since it arose. In full
generality, the Siegel bound L(1, x) >. ¢ ¢ for all ¢ > 0, which is non-effective
as soon as ¢ < 1/2, is the best-known one.

Suppose there is a sequence of primitive and quadratic Dirichlet character
X» (mod D,,) such that L(1, x,,)log D, — 0 as n — oco. These characters would
then give a family of multiplicative functions which “mimick” the Mobius func-
tion on most integers on size DY) without large prime divisors, while at the
same time, being of a controlled analytic complexity, since Y, is periodic mo-
dulo D,,.

This idea was pursued in a seminal work of Heath-Brown in 1983 (Heath-
Brown 1983), and in many recent works of Friedlander and Iwaniec (Friedlan-
der; Iwaniec 2004 ; Friedlander ; Iwaniec 2005 ; Friedlander ; Iwaniec 2013). It
follows from these works that the existence of Siegel characters would allow to
solve many problems which are just beyond the threshold of modern analytic
techniques : the twin prime conjecture (Heath-Brown 1983), or primes in arith-
metic progressions of large moduli (Friedlander ; Iwaniec 2003), or in very short
intervals (Friedlander ; Iwaniec 2004).

With James Maynard, we have proved in (Drappeau; Maynard 2019) that
the existence of exceptional characters would imply a non-trivial bound for the
average value of Kloosterman sums along prime numbers.

Théoréme 2 (Drappeau; Maynard 2019). For any € > 0, there exist A, B > 0
such that for any primitive quadratic character x (mod D) and all x > D*, we
have

S(1,1;p)
>

Since |S(1,1;p)| < 2,/p by the Weil bound, the above statement is non-trivial
as soon as there exists a sequence x,, (mod D,,) of primitive quadratic characters
which satisfies L(1, x,,) log D,, — 0, in other words, under the existence of Sie-
gel characters. The estimate from theorem 2 is then relevant in a range of the
shape [D#, D¢] with C arbitrary but fixed.

< W(I)(& + BL(1, x) log x).
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The basic strategy is the one followed by Heath-Brown (Heath-Brown 1983)
and Friedlander-Iwaniec (Friedlander ; Iwaniec 2005 ; Friedlander ; Iwaniec 2004),
which consists in approaching the van Mangoldt function A(n) = log*u(n) by
the convolution logxx(n). From the point of view of analytic complexity, this
last function is comparable to 1 x 1(n), the divisor function. The problem then

translates to
> > 5(1,1,mn).

N<n<2N M<m<2M

When M < N'=¢ ou N < M'~¢, the estimates from Deshouillers-Iwaniec, which
are of the same kind of theorem 1, give an acceptable bound. The main difficulty
in the method is the case M = N. In this case, we are not able to exploit cancel-
lation in the sign of the Kloosterman sums. The crucial idea is to replace log(n/d)
in the convolution A(n) = >, u(d) log(n/d), by log(y/n/d). This has strictly no
effect on the rest of the arguments, but has the advantage of dampening the
effect of those d of size about /n, which correspond to the problematic case
above. The rest of the argument follows a method of Fouvry-Michel (Fouvry;
Michel 2003), based on an idea of Hooley (Hooley 1964) and the numerical
coincidence 8 < 37, which shows that |S(1, 1, n)| becomes negligible, on average
over n, as n has more and more prime divisors. This idea arises in many other
works on Kloosterman sums, notably the recent work of Xi (Xi 2020) on the
non-coincidence between Kloosterman sums and Hecke-Maass eigenvalues.

1.2 Shifted convolution with the divisor function

1.2.1 The error term in the Titchmarsh divisor problem

Bounds on exponential sums of the same type as theorem 1 naturally find
applications to the estimation of “shifted convolutions”

> f(n)g(n+1), (1.5)

n<x

where f and g are assumed to be multiplicative, or to have a strong link with a
multiplicative functions, such as the characteristic function of prime numbers.

One approach in this problem is to approximate f and g by non-trivial Diri-
chlet convolutions, which amounts to factorizing n = ab and n + 1 = cd, and
then to count solutions to the equation c¢d — ab = 1 weighted by some coef-
ficients (Duke; Friedlander; Iwaniec 1994). In the best case scenario, the co-
efficients vary smoothly with a, b, ¢, d, and by Fourier analysis, we get back to
exponential sums of the same shape as Kloosterman sums. This explains why es-
timates based on Kloosterman sums are particularly interesting in multiplicative
number theory. We refer to (Kowalski 2003) for a closely related discussion.

The divisor function 7 = 1 % 1 can be seen as the most simple arithmetic
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function which is not a perturbation of a constant function. The higher-order
divisor functions 7, = 1 % --- % 1 (k times) are the most natural generalizations.
The indicator function of primes n — 1p(n) can be seen as a sort of limit of
the maps 7, in the sense that if a question concerning a map f can be resolved
for f = 7, k arbitrary, with some uniformity in %k, we expect that the same
question could be resolved for f = 1p. This vague classification of multiplicative
functions materializes in “combinatorial identities” for multiplicative functions,
the most well-known of which are those of Linnik, Vaughan and Heath-Brown,
and which will be the topic of this section.

The Titchmarsh divisor problem (Titchmarsh 1930) consists in estimating the

sum
T(z):=> 7(p—1).

p<z

It is a special case of the question (1.5). The best estimation known is

T(x) =z + e li(z) + O((logxx)A) (1.6)

due independently to Fouvry (Fouvry 1985) and Bombieri-Friedlander-Iwaniec
(Bombieri ; Friedlander ; Iwaniec 1986). The shape of the error term follows from
the use of the prime number theorem in arithmetic progressions, and the Siegel-
Walfisz theorem. It is a natural question to ask if a hypothesis such as Riemann’s
hypothesis on the ¢ function would allow one to have a power-saving error term
in x, as is the case in the prime number theorem. The following result, obtened
in (Drappeau 2017), shows that the answer is yes.

Théoréme 3 (Drappeau 2017). Assume the Riemann hypothesis generalized to all
Dirichlet L functions. Then there exists 6 > 0 such that

T(z) = c1x + co li(z) + O(x' %) (x >2).

This result is actually the one which originally motivated theorem 1. An effec-
tive value of § was obtained by Tang (Tang 2020). It is natural to expect that the
optimal error term should be O(z!/?+¢), but the best value of § permitted by the
method is quite far away from that.

The strategy is very close to the work of Fouvry (Fouvry 1985) and Bombieri-
Friedlander-Iwaniec (Bombieri; Friedlander ; Iwaniec 1986), but the constraint
to obtain a power-saving error term forbids us to use certain techniques they use,
from sieve theory notably. By taking these constraints into account, it transpires
that the exponential sum one has to estimate has the shape

> bursgle,d)e (n(sc)_l + (Cd)_1> (1.7)

c,d,n,r,s rd q

15



where ¢ > 1 is a relatively small integer, of the order of z°. Previous works (Fou-
vry 1985 ; Bombieri; Friedlander; Iwaniec 1986) used several reductions to res-
trict to the case ¢ = 1, which brought the above sum into the range which
Deshouillers-Iwaniec’s work (Deshouillers; Iwaniec 1982a) could handle. But
these reductions are made at a cost of the order of z e=<vV1°8% at best. However, ha-
ving theorem 1 at our disposal, we may work directly with the original sum (1.7)
by separating the variables ¢ and d according to their congruence classes mo-
dulo ¢, keeping power-saving error terms in x throughout the argument. This
leads to the proof of theorem 3.

1.2.2 Titchmarsh’s problem for other multiplicative
functions

Consider the sum (1.5) with f = 7. We know how to obtain an asymptotic
estimate for ¢ = 1p, as we have seen in the previous paragraph. However, until
2017, nothing seemed to be known for functions which are considered to be of
the same difficulty, or simpler, such as g = 15, the indicator function of the set B
of integers which are sums of two squares.

More generally, we expect to be able to handle the case of the map g = 7,
for z € C in the Titchmarsh divisor problem, because it is considered to be of
the same “analytic difficulty” as the indicator function of primes : for instance,
the map s — ((s)* possesses singularities at zeroes of the Riemann function ¢,
which are of logarithmic nature.

We resolved this problem in a work with Berke Topacogullari (Drappeau; To-
pacogullari 2019). The “analytic difficulty” which we mentioned above materia-
lizes, in our result, through a hypothesis that the function ¢ behaves as a periodic
function when restricted to prime numbers.

Théoréme 4 (Drappeau; Topacogullari 2019). Suppose that the multiplicative
function g : N — C satisfies the following hypotheses :
— For some D € N, whenever p,q are prime numbers with p = q (mod D),
then g(p) = 9(q).
— For some A > 0, we have |g(n)| < 7(n)* for alln € N.
Then for all B > 0, we have

Y ogmrn-=2 Y Y Y gm)x(n) + Opaslz/logz)?).

1<n<z X primitive  q<./x QO(q) ¢?’<n<z
cond(x)|D cond(x)|q (n,g)=1

(1.8)

The sum over n in the right-hand side is easy to estimate by using classical facts
on the zero-free region of Dirichlet L-functions. Fouvry and Tenenbaum (Fouvry;
Tenenbaum 2022) have recently obtained a result which contains theorem (1.8)
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and yields new applications on the shifted convolution problem (1.5) for additive
functions f, g.

Compared with the arguments underlying the Titchmarsh problem (1.6), the
part which we improve upon is the one commonly referred to as the “combina-
torial identity”. It is an argument which has been studied extensively for prime
numbers (Vinogradov, Linnik, Gallagher, Vaughan, Heath-Brown) ; we refer to
the survey paper by Ramaré (Ramaré 2013) for a much more detailed discus-
sion of the history of these techniques. The new ingredient in theorem 4 is a
combinatorial identity for a multiplicative function ¢ satisfying the hypotheses
of theorem 4. In fact we obtain two such identities.

The first is an identity of Heath-Brown’s type (Heath-Brown 1982) for 7,
with a € Q. The possibility that such a formula exists was suggested by another
identity, due to Robert C. Vaughan, for 7/, which was kindly communicated to
us by Hugh Montgomery thanks to Olivier Ramaré. This identity for 7, /,, which
we do not display here, will appear in volume II of Multiplicative Number Theory,
but we have not managed to use it in the Titchmarsh problem. After some trial-
and-error, we finally found a suitable generalization of Heath-Brown’s identity.
To continue with the simple special case of the function 7 ,, it has the shape

> am(C(8) P My (s) = 1)"C()2 = C()M 2+ D0 0eC () Mu(s)F, (L9)

m>4 0>1

where (am), (b;) are complex numbers, ( is the Riemann zeta function, and

My(s)= > 71_1pm)n™®

n§x1/4

is an approximation to ¢(s)~!/2. The Dirichlet series on the left-hand side of (1.9)
has no terms of index < x, while the series on the right-hand side contains ¢'/?
on the one hand, and non-negative integer powers of ( and of the truncated
series M, g on the other hand. The coefficients a,, and b, are obtained by first fin-
ding a polynomial of the shape P(X) =1+ XQ(X?), Q € C[X], which vanishes
at 1 at order 4, for instance P(X) = 1 — 32X 4 32X3 — 2LX5 4 2 X7, We then
formally substitute X = ¢'/2M in the equality P(X) = 1+ XQ(X?), and then we
multiply ¢'/2.

It is much less obvious to see that this method generalizes well to the func-
tion 7, for a = u/v rational, with a good control in terms of v on the size of the
coefficients b,. This last point is crucial. We prove that such is indeed the case;
the size of b, is then essentially controlled by the (archimedean) size of |u/v|.
This allows us, as a first step, to estimate the sum

Z To(n)T(n + 1)

n<x
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uniformly in o € Q, |a] < 1, denom(a) < (logz)#, with an error term of
size O(x/(log x)*).

To tackle the general case 7., z € C, |z| < 1, the second idea we use is simply
a Lagrange interpolation on the polynomial map

2 Y T(n)T(n+1).

n<x

The simplicity of this approach hides, of course, the issue to control the depen-
dency in z in the interpolation step. We first estimate the contribution of terms
of degree > C'loglog x by O¢(z/(log 2)¢+9=M) for C' > 7.! The order of magni-
tude loglog z is related to the typical value of the number of prime divisors of
integers of size up to = (a theorem of Hardy-Ramanujan). Then, a natural choice
of sampling points consisting of rational numbers of denominators O(loglog x),
in the Lagrange interpolation step, leads to an error term of the shape

[error term at the sampling points| x exp([degree]), (1.10)

which is to say TIEIRS exp(C'loglog z), with A arbitrarily large. Finally, we
obtain for all z an estimate with error term

Onc (om0 * (g aic)
AC (log z)C+0-(0 " (logz)A-C )’

and a suitable choice of A and C' concludes the argument. The success of this
approach crucially relies on the dependence on the degree in (1.10).

The second proof we have obtained is very similar to Vinogradov’s original
works (Vinogradov 1937). It does not rely on an interpolation step, and is there-
fore somewhat simpler to set up. The starting point is the Linnik identity (Linnik
1963, Chapitre VIII), which is to write

==y =X (-1

320

As we expand the right-hand side as a Dirichlet series, the coefficient of an inte-
ger n involves indices j of size O(logn), which is way too large in practice. The
idea now is to factor the y-friable part of integers at the level of Dirichlet series,
which is to say, to write

¢ = CyMyv Cy(S) = H(l _p_s)_la My(s) = H(l _p_s)_l'

Py P>y

We then chose y = z¢ for some small value of £ > 0 to be determined. By using

1. The exponent is not asymptotically optimal but it suffices for us that it tends to infinity
with C.
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the strategy of Linnik to the part with M,, we obtain

My =3 () (M, -1,
720 \J

and if we wish to detect the coefficient of an integer n < x, the sum over j can be
truncated at j < 1/e. To conclude, we bring back the various factors ¢,, which has
no impact on the argument as long as ¢ is sufficiently small. In practice ¢ < 1/4
does the job. This is due to the fact that the indicator function of friable integers
benefits from good factorization properties in the sense of Dirichlet convolution.
In the case of the divisor function, we obtain for instance the decomposition

T.(n) = %: Co n:zn:n To—o(n1)7e(n2), (n <x), (1.11)

plny = p<al/4

where
11 2 1.3 5.2 , 1.3
Co.=1—Fz+2"— 3527, G, =3z—352"+ 327,
2 1.3 1 1.2 , 1.3
CQ’Z:_%Z+2Z_§Z, C3. = 32— 32"+ 52"

Starting from the formula (1.11), it is relatively simple to follow the arguments
of Bombieri-Fouvry-Friedlander-Iwaniec. We check that > ,c¢,., = 1 (which is
consistent with (1.11) at n = 1) and that > ,lc,, = z (which is consistent
with (1.11) when n = p > z'/%).

The uniformity with respect to the complex variable z allows us to use the Cau-
chy formula to obtain asymptotic formula relative to integers having exactly &
prime divisors.

Corollaire 1 (Drappeau; Topacogullari 2019). For 1 < k < loglogx, we have

r . Pj(loglog ) (loglog x)*
R
2 m(n=1) longz:1 (log )i 0 xk!(log)J—HE ’

n<z
w(n)=k

where for all j > 1, P;), is a polynomial of degree at most k — 1.

For k = 1, we recover the theorem of Bombieri-Fouvry-Friedlander-Iwaniec
with an error term of the same quality. Note that the number of integers n < x
such that w(n) > Cloglogr is <¢ x(logz)©~17¢1¢¢ The condition on k in
corollary 1 is therefore natural, since it corresponds to the domain in which the
error term, which arises from an application of the Siegel-Walfisz theorem, is
relevant.

The case z = 1/2 in (1.11) allowed us to answer the question which initially
motivated us.
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Corollaire 2 (Drappeau; Topacogullari 2019). If B denotes the set of numbers
which can be written as sums of two squares, then for some sequence of num-
bers (B;);>0 and all J >0, we have

J-1
5]’ 1/2—J
T(n—1)= :1c(logac)1/2 -+ Oy (z(log x) / ).
nEIS’Zﬂ[Zx} ]20 (10g ZIZ')]

These results can still be applied if n — 1 is replaced by n — h with h € Z, h # 0
and |h| < 2° for some § > 0.

In this topic, one would like to be able to evaluate the left-hand side of (1.8)
even in a situation when the mean value of f is negligible with respect to any
negative power of logz. The error term given in theorem 4 is then no longer
negligible with respect to the main term. The case of friable integers was treated
in (Fouvry; Tenenbaum 1990 ; Drappeau 2015), in particular thanks to work of
Harper (Harper 2012) for small values of y. It is natural to ask the same question
for the set of integers which have exactly k£ prime divisors when &/ loglog z — oo,
that is to say, an analogue of corollary 1 for these large values of k. The charac-
teristic function of these integers enjoys good factorization properties, and it is
reasonable to expect that some of the techniques used in (Drappeau 2015) could
be adapted to treat this case. The problem of replacing the function 7 in the left-
hand side of (1.8) by a more general function seems, on the contrary, currently
out of reach. The simplest case after 7 is that of the ternary divisor function 73 ;
the asymptotic estimation of >, ., 73(n)73(n + 1) is a major open question in ana-
lytic number theory, and essentially no approach has been remotely effective up
to now.

1.3 Zeroes of Dirichlet L-functions

In this section, we assume the truth of the Riemann hypothesis generalized to
Dirichlet L-functions.

The problem we discuss here concerns the vertical distribution of zeroes of
Dirichlet L-functions. Let y be a primitive Dirichlet character. We are interested
in the multiset of zeroes of its associated L-function in the critical line,

Zy :={y € R, L(5 +iv, x) = 0},

and then to the multisets

Zg = U Zy,
x (mod q)
primitif
ZSQ = U Zq.
9<Q
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Using methods due essentially to Riemann and Weyl, it is known that

card{y € Z, N[0,T]} ~ EN log <q>7 (T — o0, T < ¢°V).
2 27
Using this estimate, it is natural to expect to find, at a distance =< 1 from the real
axis, of the order of log ¢ elements of Z, . Very little is known for a given fixed
character y, as ¢ — oo. However, we have precise conjectures when we let y vary
among all Dirichlet characters modulo ¢, that is to say, if we average over Z,,.
Given amap ¢ : R — C and an integer ¢ > 1, we are interested in the quantity

Wi aq) = 3 Zqﬁ(;rlogq).

x (mod q) Y€Zy
primitif

Denote by ¢(¢) the number of primitive characters modulo g.

Conjecture 1. Suppose that the Fourier transform QAﬁ s of compact support. Then
we have

W(0.0) ~ (a) [ 6(€) (1.12)

as soon as the right-hand side tends to oco.

This conjecture is a special case of a vast net of conjectures made by Katz-
Sarnak (Katz ; Sarnak 1999), which give a hypothetical link with the distribution
of eigenvalues of random matrices. These conjectures find their roots in an ar-
ticle of Montgomery (Montgomery 1973) on the pair correlation of zeroes of the
Riemann (¢ function.

Conjecture 1 and its generalizations can be sometimes established under hy-
potheses relative to the size of the support of the Fourier transform of ¢. The
following result, which is proved for instance in (Sica 1998), follows relatively
easily from the generalized Riemann hypothesis.

Théoreme 5. Under the Riemann hypothesis generalized to Dirichlet L-function,
the asymptotic equivalenc (1.12) holds true as long as ¢ is supported inside |—2,2].

In joint work with Kyle Pratt and Maksym Radziwilt (Drappeau; Pratt; Radzi-
wilt 2022), we extend the condition on the support of ¢, at the cost of having an
additional average over the modulus q.

Théoréme 6 (Drappeau; Pratt; Radziwitt 2022). Under the Riemann hypothesis
generalized to Dirichlet L-functions, we have

S W)~ (X v@) [ oo

q<Q q<Q

if ¢ is supported in ]—2 — 8,2 + 8| with & = 50,/1093.
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A similar statement holds without having to assume the Riemann hypothesis,
one simply needs to replace v by —i(p — 1/2) in the definition of W (¢, q).

The main feature of theorem 6 is that we pass beyond the threshold 2 on
the size of the support of ¢, which could not be deduced in a simple way from
the Riemann hypothesis as in theorem 5. The situation is analogous to that of
counting primes in arithmetic progressions of modulus ¢, where a trivial appli-
cation of the generalized Riemann hypothesis leads to a condition ¢ < 2'/2~¢
for individual moduli, which we can beat unconditionally in some cases (Fouvry
1985 ; Bombieri; Friedlander; Iwaniec 1986) by performing an additional ave-
rage over ¢. This analogy is more than just formal, since the same tools are at
play in both cases.

The method begins with an application of the explicit formula of Riemann-
Weyl, which takes essentially the shape

W~ (L) [T (g@g);mé(ﬁig).
primiti

By orthogonality of Dirichlet characters, this last sum can be evaluated if we
know how to estimate

o X (D)

<@ p=1 (mod q) log q

We are then reduced to counting primes in arithmetic progressions. The funda-
mental problem is the following : prove that there exist real numbers x > 2
and n > 0 such that we have

LX) - e
qs%< pgf L Sp(q)) <QUWX, lorsque X = Q". (1.13)
p=1 (mod q)

This question may seem paradoxical. Indeed, in the estimates of Bombieri-Vinogradov’s
type, the range X > Q*¢ is the easy one, and the whole problem is to study small
values of X, whereas here we wish to take X somewhat larger than %. The main
thing at stake is in fact the error term, which we wish to show is negligible with
respect to v/ X, whereas to study prime numbers, the bound to be beaten is
rather of size X. Then, for X somewhat larger than Q?, the error term we wish
to achieve is of size X'~7, whereas the Bombieri-Vinogradov theorem gives us an
upper-bound of size X/(log X)4.

The “proof of concept” of theorem 6 is given by the estimate of theorem 3.
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This last theorem proves that if the generalized Riemann hypothesis is true, then

li(x)
q%( p;( ! o(q)
p=1 (mod q)

) <X (X =@

for some n > 0, which is a bound of type (1.13) for x = 2. All the work consists in
showing that one may take « slightly larger while keeping an error term of the
same quality.

The fact that we can make do without the generalized Riemann hypothesis in
theorem 6 is related to the fact that the characters xy which are involved in the
definition of W (¢, ¢) are all primitive. We can therefore take away, in our whole
argument, the contribution coming from characters of conductor, say, at most x°
for some small 6 > 0. These characters are the only obstruction to getting a
power-saving error term in X in the absence of a Riemann hypothesis.

1.4 Friable values of quadratic polynomials

Another emblematic application of the estimates of Deshouillers and Iwaniec
(Deshouillers; Iwaniec 1982a) concerns the level of distribution of quadratic
polynomials. This is due to the fact that the roots of a quadratic polynomial
naturally give rise to an exponential sum of the same type as Kloosterman sums.

The problem is to estimate the sum

A(x,Q,A):Z)\q( > 1—TP(:c,q>),

4<Q n<e

n2=-1 (mod q)

where ()\,) is a sequence of complex numbers of moduli at most 1, and TP(z, )
is the expected main term, which means

TP(x,q) := :L’p(q)’ p(q) = card{m (mod ¢q), m* = —1 (mod q)}.

q

We may conjecture that for all ¢ > 0, there exists § > 0 such that
Alz,Q,X) =0@'™),  (Q <a*),

uniformly in A. In practice, we have ), ., TP(z,q) < zlog(2(Q)), and any bound
on A(x,q,\) which is negligible with respect to xlog () is interesting. This pro-
blem is more and more difficult as the value of () gets larger and larger.

The following result was obtained in joint work with Régis de la Breteche (La
Breteche ; Drappeau 2020).
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Théoréme 7 (La Breteche; Drappeau 2020). Assume that the sequence (N\,) is
well-factorable in the sense of Iwaniec. For all € > 0, there exists 6 > 0 such that

IA(z, QN <z for Q< 't/

This improves quantitatively a result obtained by Iwaniec in 1978 (Iwaniec
1978), which dates from before “kloostermania”. Such a bound has consequences
on problems involving the factorization of integers of the shape n? + 1; for ins-
tance, Iwaniec uses his estimate on |A(z, @, \)| to prove, at the outcome of signi-
ficant work, that the polynomial n? + 1 takes, infinitely often, values with at most
two prime factors. This is an approximation of the Landau conjecture that n? + 1
is prime for infinitely many values of n.

We applied theorem 7 to another problem, which goes back to work of Cheby-
shev. The question is to find values of n such that n% 4 1 has a large prime divisor.
The best result before 2017 was due to Deshouillers and Iwaniec (Deshouillers;
Iwaniec 1982b), who prove the lower bound

P*( I =+ 1)) > 120

r<n<2z

where P*(m) denotes the largest prime divisor of m, with the convention P*(1) =
1. In the setting of the works which led us to theorem 7, we were able to update
what was known in this topic, in the light of the progress made on the Selberg
conjecture on small eigenvalues of the hyperbolic Laplacian on congruence sur-
faces. The explicit dependence on ¢ in the estimate (1.2), in particular, allows us
to deduce the following result.

Théoréme 8 (La Breteche; Drappeau 2020). We have

P+< 11 (n2+1)> > 12182,

r<n<2z

This result was then substantially improved by Merikoski (Merikoski 2022) :

we now know that
P*( T »*+ 1)> > 2",

r<n<2z

One of the new ideas in the work of Merikoski is the use of a lower bound
sieve of Harman in the arguments of Deshouillers-Iwaniec, which has the effect
of substantially amplifying the efficiency of bounds on exponential sums in this
problem.

Another part of our work with Régis de la Breteche (La Breteéche ; Drappeau
2020), which in fact was the original motivation for this work, is the construction
of a lower bound sieve for the set of friable integers. An integer n is said to
be y-friable if P™(n) < y. Friable integer are a recurrent theme in multiplicative
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number theory (Granville 2008 ; Hildebrand ; Tenenbaum 1993 ; Moree 2014),
and were a focus of my thesis work. Define

S(z,y):={n<zpln = p<y}
U(z,y) := card S(z,y).

For all real « > 1, it is known that
U(z, ') ~ap(u)  (z— 00),

where p : R>; — [0, 1] is the Dickman function. As u — oo, we have asymptoti-
cally p(u) = v~ U+ Analogously to prime numbers, we would like to be able
to count asymptotically the cardinality of those integers n < x for which n? + 1
is y-friable. This can be viewed as an instance of the problem (1.5) when f is the
characteristic function of y-friable integers, and g is the characteristic function of
squares ; or as a “dual” version of the conjecture of Landau which we mentioned
earlier. We conjecture that

C(z,z'/") == card{n < z : n* 4 1 is z'/"-friable} ~ zp(2u),

on the basis of the fact that n? + 1 is typically of order of magnitude z?, and on
the heuristic that such integers, which have no fixed divisors, take friable values
at a frequency similar to integers of the same size.

The question of obtaining an upper-bound on the quantity C(z, z*/*) is simpler.
The best general upper-bound, due to Khmyrova (Hmyrova 1964), yields

C(z, x'") < wp(u)

foralle > 0 and u < log x/ log log x, based on an elementary estimation of A(z, @, \)
for Q < z'~¢.In the paper (La Bretéche ; Drappeau 2020), we construct an upper-
bound sieve for friable integers, which gives, in conjuction with theorem 7, the
following estimate.

Théoréme 9 (La Breteche ; Drappeau 2020). For any fized € > 0, there exists ¢ > 0
such that for all 1 <u < clogx/loglogx, we have

Oz, z'") <. xp((1+ 2 —e)u).

As u =< logz/loglog z, we win asymptotically a power of x with respect to
previous estimates.

Theorem 7 gives two improvements with respect to the existing literature. The
first is about the numerical value of the exponent. The previous work in this topic
is due to Iwaniec, which obtained an analogous estimate with exponent 1/15, by
using the Weil bound on Kloosterman sums. Using the recent works on bounds
on Kloosterman sums on average, and notably theorem 1, is the main ingredient
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in the numerical gain. The second improvement in theorem 7 is much more
substantial but also slightly more technical : contrary to earlier works using the
Deshouillers-Iwaniec bounds, we have no need that the sequence (),) is sup-
ported on prime numbers or squarefree numbers. This flexibility comes from an
improvement in an argument of Duke-Friedlander-Iwaniec (Duke ; Friedlander;
Iwaniec 1995), and uses crucially the uniformity in ¢ allowed in theorem 1.
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2 Modularity, continued fractions
and limit laws

In this second part, the results we present concern objects originating from
arithmetic, which are studied using methods from dynamical systems.

We first describe the problem which initiated the works presented in this part.
It is about the series

D(s,z) =Y ——e(nz),

n>1

where we recall that 7(n) is the number of divisors of n, and e(z) := e*™**. This

series converges absolutely for Re(s) > 1 and « € R arbitrary. When =z € Q,

Estermann (Estermann 1930) proved that the function D(-,z) has a meromor-

phic continuation to C, and a functional equation relating the value D(s,a/q)

to D(1—s,—d/q) when ad = 1 (mod ¢). This can be seen, for instance, by expres-
sing the periodic function n — e(nx) in terms of Dirichlet characters.

The value D(1/2,a/q) is then closely linked with the central values L(2, x)

of Dirichlet L functions. Bettin proves in (Bettin 2016) that when ¢ is a prime

number and (a, ¢) = 1, the twisted second moment

1
My(q,a) := 7 Y x(@]L(z )7
T  (mod q)

is close to the value at x = a/q of the central value of the Estermann function,
Ms(q,a) ~ReD(3,a/q) + Im D(3,a/q). (2.1)
As Bettin remarks in (Bettin 2016), the estimation of Ms(q, a) is related to that
of the fourth moment of Dirichlet L functions,
1

My(q) = @X g(;jq) IL(5, ),

whose estimation with power-saving error term in ¢ by Young (Young 2011), suc-
cessively improved in (Blomer ; Fouvry; Kowalski et al. 2017 ; Wu 2020), was a
remarkable success of the methods described in the first part (algebraic exponen-
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tial sums, Kuznetsov formula). Indeed, we have by orthogonality of characters

My(q)= > |Ma(q,a)f.

a (mod q)

In view of (2.1), this motivates the question of understanding the size of values
taken by D(3, x) as « varies in a set of rational numbers.

2.1 Statistical distribution of central values of
additive twist L functions

2.1.1 Equidistribution of rational orbits for the Gauss map

Improving earlier results by Young (Kiral; Young 2019) and Conrey (Conrey
[s. d.]), Bettin (Bettin 2016) shows that the function

¢(x) == D(5,2) = D(3,—3), (2.2)

initially defined for = € Q \ {0}, extends to a Holder continuous function on R \
{0}. Along with 1-periodicity, this implies more generally that for any v € SL(2, Z),
the map

¢(x) : = D(3,7) — D(3,77)

extends to a Holder continuous function on R\ {y~*oo}. This shows that D(3, -) is
an instance of what Zagier called, in a seminal article (Zagier 2010), a “quantum”
modular form for SL(2, Z).

The equality (2.2) paves the way to an expression of D(3,z) in terms of the
finite orbit of the rational x under the Gauss map

T :1]0,1[— [0, 1], T(x) ={1/z},

where {-} denotes the fractional part of z, that is to say, using the Euclid algo-

rithm :
r(x)

D(3,2) = D(3,0) + >_ o((—=1)'T""}(2)), (2.3)
j=1
where r(z) > 0 is the smallest integer such that 77®) (x) = 0. This equality brings
the problem entirely to that of the distribution on average of orbits of rational
numbers under the Gauss map. All the arithmetic in the problem is encoded in
the analytic properties of the map ¢, which is usually called the “observable” in
the theory of dynamical systems.
Denote the set of rational numbers [0, 1] of fixed denominator ¢ by

Q,:={a/q, 0 <a<q,(a,q) =1}
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The question we would like to be able to address is the following : if = is a
rational number taken uniformly at random from €2,, what can we say of the
random variable D(},z) as ¢ — co?

The methods we have at our disposal do not give us any precise results on Q, *.
The problem becomes tractable as soon as we perform an additional average
over ¢, that is to say, if we work in the larger set

Qg = U Qq

of rationals of denominators at most (). The distribution on average of Birkhoff
sums of the shape (2.3), among rationals in Q¢ is a subject which recently
entered within the full scope of the theory of measured dynamical system, due
to the work of Vallée (Vallée 2000) and Baladi and Vallée (Baladi; Vallée 2005).

Letting (1< be endowed with the uniform counting measure, we denote PP
and E, the associated probability and variance. One of the main results of Baladi
and Vallée in (Baladi; Vallée 2005) is the following.

Théoréme 10. Let (¢(n)),>1 be a sequence of real numbers satisfying c(n) =
O(logn) forn > 2. For any x € QN (0,1), we let

r(z)
>~ cla)

<

where aj(x) = [1/T7" ()] denotes the j-th coefficient in the continued fraction

exrpansion
1

There exists 6 > 0 and two functions U,V defined and holomorphic in a neighbo-
rhood W C C of 0, such that as (Q — oo, we have

EQ<eXp (wf(x))) = exp (U(w) log@Q + V(w) + O(Q_5)) (weW). (24)
The quality of the error term in the right-hand side of (2.4) relies notably on

an adapted version of a method of Dolgopyat (Dolgopyat 1998) which gives a
uniform spectral gap for the family of transfor operators associated with 7',

1
H, fHZ n+x2+”f<n+x> (t €R).

As explained in Section 1.1 of (Baladi; Vallée 2005), analogues of theorem 10

1. We refer nonetheless to (Aistleitner ; Borda ; Hauke 2022) for some quite general recent
results.
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were known and classical in the situation where = € [0, 1] is chosen uniformly
at random according to the Lebesgue measure, and when the function studied
is fn(z) = N, c(aj(x)) with N — co. The parameter N plays formally the role
of log ), up to a constant, which is the typical length of the continued fraction
expansion of a fraction in (2. The analogous continuous problem is simpler by
many aspects : for instance, the continuous analogue of the estimate (2.4) can be
obtained using information on perturbations of the single operator H, for 7 = 0
only, which can be gotten using the theory of perturbation of operators, without
having to use the techniques of Dolgopyat.

In theorem 10, the function f(z) can be seen as a Birkhoff sum of the same na-
ture as (2.3), where the observable is ¢(z) := ¢(|1/x]). For the map D(3, -) which
we are interested in here, the main difference with respect to the statement of
theorem 10 are the following? :

1. our observable ¢ is Holder continuous, rather than constant, separately on

each interval [, 1],

2. our observable ¢ does not have an exponential moment, more precisely, we
have ¢(z) ~ cx™/%log(1/z) as = — 0.

In (Bettin ; Drappeau 2022b), we obtain a generalization of theorem 10 which
resolves both points. Given a map ¢ : [0, 1] — R, denote

r()
So(z) = (T '(x),  (2€QN(0,1)).

j=1

(z) for ¢(x) = c([1/x]).
D(3,0)+S4(z) where ¢

<

In the case of theorem 10, we therefore have f(z) = S,
In the case of the Estermann function, we have D(3, z)
is a certain Holder continuous map.
The statement of our result involves the integral
L dx
I(t ::/ o) 1)L (4 R). 2.5
o) = [0 ) e R) (25)
Théoréme 11 (Bettin; Drappeau 2022b). Let kg, Ao, g > 0. Assume that the
function ¢ : (0,1) — R satisfies the following properties :
— For each n € N, the map ¢|]1/(n+1)71/n[ extends to a ko-Holder continuous

map,
— We have
| . d(x) — p(y)™
> 2( sup |o(z)|[* +  sup () /\(OHZ| ) < 00. (2.6)
n>1 ™V \ee[ 15,1 vyelir,4] |2 =yl

2. We neglect in what follows the effect of the sign change (—1)’~! in (2.3).
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Then there exists to,d > 0 and two maps U,V : [—tg, to] = C such that

Eq((exp (itS4(x)) ) = exp (U log Q+ V(N +0(Q ). (¢ € [~tosta]), (27)

as well as

u(t) = Ly(t) + O=(* + [t**7°),
V(t) = Oc([t] + [t7).

12log 2
2

If moreover we have ag > 1, then there exists C' € R such that

~ 12log2
oo

U(t)

I,(t) + Ct* + O (13 + |t| 7).

The conclusion of theorem 11 corresponds to the case ¢ = iw of theorem 10
of Baladi-Vallée. An estimate for ¢ complex in the neighborhood of 0 can be
obtained, with an identical proof, under the natural condition that ¢ admits ex-
ponential moments, in the sense that

Z i sup ) exp (ao\gb(;c)D < 00

2
1
S R

for some oy > 0. This is equivalent to asking that ¢(x) = O(|log(2/z)|), similarly
as in the growth hypothesis on ¢ in theorem 10. This hypothesis is not verified
in the case of the Estermann function.

The proof that we present with Bettin of theorem 11 relies on a modification
of the arguments of Baladi and Vallée (Baladi; Vallée 2005), and particularly
the part which uses the works of Dolgopyat (Dolgopyat 1998). To resolve the
first objection 1., we work in a space of Holder continuous functions, which
can be done using standard analytical methods. This modification turned out to
be very useful to allow arbitrary large values of Ay > 0 in condition (2.6). To
resolve the second objection 2., we use recent results of Kloeckner (Kloeckner
2019) on the spectrum of perturbed linear operators, which are valid without
having to assume analyticity of the perturbation. The price to pay to obtain weak
hypotheses on ¢ is to express our results in terms of the integral I,(¢) without
further evaluating it.

In a companion paper (Bettin ; Drappeau 2022a), we evaluate the integral /()
in most practical situations. In the most favourable cases, ¢ is square integrable,
and we can estimate the integral (2.5) by inserting a Taylar expansion of order 2.
We obtain the following corollary.

Corollaire 3 (Bettin; Drappeau 2022b). Assume the hypotheses and notations
of theorem 11. Assume moreover that ag > 2, and that there does not exist a
constant ¢ € R and a map f on [0,1] such that = ¢+ f — foT. Then there
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exists 4 € R and o > 0 such that for allt € R, as () — 0o, we have

<S¢(x)—,ulogQ §t> ot e /de—l—o(l).

ov/log () N 7

The expression of 4 here is

12 (1 dx
'u_7r2/0 (b(m)l—i-x'

The quantity o, on the other hand, does not seem to admit in general a simple
explicit expression in terms of ¢.

Lastly, we illustrate theorem 11 by a limit theorem on the sum of coefficients a;(z)
of the continued fraction expansion,

We obviously have ¥(z) = Sy(x) for the choice ¢(x) = |1/x]. This map ¢ is
not integrable near 0. To state the limit law, we define G; as the cumulative
distribution function of the stable law S, (£, 1,0), which is to say,

v 1 oo . .
G1(v) 2:/ g1(x) dz, g1(x) L e L L (2.8)

_ ~or

We also denote 7, the Euler-Mascheroni constant.

Corollaire 4 (Bettin; Drappeau 2022b). For each v € R, we have

(E(x) loglog Q — o
Q

logQ 72 /12 = U) = i)

as ) — oo.

The law 51(£,1,0) does not a have a moment of order 1. This corresponds to
the fact that ¢(z) = |1/x] is not integrable on [0, 1].

The continuous analogue of corollary 4, that is, when « is taken uniformly at
random from [0, 1] (the sum >(x) being truncated at j < N for a parameter N €
N which tends to infinity), was established by Heinrich (Heinrich 1987).

2.1.2 Application to the Estermann function

We can now apply theorem 11 to the map D(3, ). To simplify the exposition,
we consider its real part, which has the advantage of being an even function, and
we let 1) = Re ¢ where ¢ is defined by (2.2). As Bettin showed in (Bettin 2016),
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the map 1« essentially takes the shape
V(x) = 27 V% (e log x + ) + E(x),

where F is Holder continuous on R of exponent « for all a < 1/2, and ¢4, ¢, are
constants. In (Bettin ; Drappeau 2022a), the integral /,,(¢) is estimated by

Iy(t) = 1 +iut — o*t*|logt|* + o(t?| log t|*)

ast — 07, where ;1 € R is a constant and 0 = 1 /7. By estimating the expectation
of D(1/2,z) on {2<p, we show that ;o = 0. We then deduce the following result,
which answers our initial question.

Corollaire 5 (Bettin; Drappeau 2022b). For o = 1/, we have

Re D(z) t e V2 dy
P <t)= —— +o(1
Q<0\/ (log Q)(log log Q)? ) o V2w W

as () — oo.

The appearance of the additional factor (loglog )3, which we did not antici-
pate, is intimately linked with the fact that the map  is not square integrable.
This follows in fine from the presence of a double pole at s = 1 for the Dirichlet
series ((s)?, of which D(s, z) is the additive twist.

The simplicity with which corollary 5 is deduced from theorem 11 obfuscates
our many attempts to obtain corollary 5 by other methods, which have all failed.
As an example, the most natural strategy was to pass through an estimation of
moments, in order to take advantage of orthogonality of additive characters. This
computation was performed by Bettin in (Bettin 2019) with the conclusion that
the estimation is no longer relevant starting from the second moment, due to a
dominant contribution coming from an asymptotically negligible set of rational
numbers. To undertake this strategy would have required a fine understanding
of the rationals which cause this phenomenon, and an analytically tractable way
of taking away their contribution. On the contrary, the dynamical methods which
underly theorem 11 analyze this obstacle in a natural and transparent way.

About the link with moments of Dirichlet L-functions, which we discussed at
the beginning of this section, it is disappointing that the exact relation (2.1), bet-
ween the twisted second moment of Dirichlet L-functions and the Estermann
function, only holds when ¢ is prime ; when ¢ is not prime, this relation is pertur-
bed by an additional multiplicative convolution. This does not allow us to trans-
fer immediately the above results, which are valid on average over ¢ without
constraints. We can nonetheless make a plausible conjecture on the distribution
of values of the twisted moments M;(q, a).
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Conjecture 2. The multiset

{ M2(aa Q)
(log q)'/2(loglog ¢

e 0<a<q,(a,Q)=1}

tends to distribute, as ¢ — 0o, according to a centered Gaussian law.

2.1.3 Application to central values of additive twists of
modular forms L-functions

Theorem 11 found an application to another type of maps on Q, which are
built out of modular forms. Let f be a cuspidal holomorphic modular form of
weight k and level N, which we denote f € Si(V). Let

f(2) =3 a2 e(nz), (Im(z) > 0)

n>1

be the Fourier expansion of f at infinity. We define the L-function

L(f, )=

n>1

Qn

ns’

initially on Re(s) > 1. It is known since Hecke that this map extends to an entire
function of s, which has a functional equation of the shape

L(f7 S) = ’}/f(S)L(fT, 1— S)

where ~; is essentially a quotient of values of Euler’s I' function. When f is a
Hecke eigenform, the map n — a,, is multiplicative, and L(f, s) then possesses
an Euler product. Hecke’s method consists in expressing L( f, s) as an integral, or
period, of the form f :

@y
il'(s)

L(f.s) [y (seo), (2:9)
0
where the integration path is a vertical line.
Analogously to the construction of the Estermann function, we can form the
additive twist :

L(f, s, )= Z %e(nx)

n>1

which converges for Re(s) > 1 and z € R. We have an expression analogous to
that of Hecke (2.9) :

(2n)
il'(s)

L(f,s,x)= /g:oo f(z)(Im z)s+%_1 dz, (Re(s) > 1),
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the integration path being again a vertical line. As = € Q, the decay of f near x
along the half-line {z + iy, y > 0} allows to analytically extend the integral
on the right-hand side, and thus also the map L(f,-,z), to the whole com-
plex plane. The resulting function again satisfies a functional equation of the
shape L(f,s,a/q) <> L(f,1 —s,—d/q) when ad = 1 (mod ¢). We can define the
central value

L¢(z) == L(f,1/2,x) (r € Q).

When £ = 2 we find, up to a multiplicative factor, a quantity known as the
modular symbol

Li(a) = cp(a)y,  (a); = /:OOf(z)dz (k= 2).

Modular symbols are used, in particular, to compute explicitely modular forms (Cre-
mona 1997).

Motivated by applications related to the rank of the group of rational points
of an elliptic curve along a family of extensions, Mazur and Rubin formulated
a series of conjectures on the distribution of values of modular symbols (z)
on average over x (Mazur; Rubin 2021). Their original conjectures were made
for = with given fixed denominator, that is, for x € 2, with the notations of
the previous section. These conjectures are still open and presumed to be very
difficult. The computation of the second moment of (z) lies very close to the
threshold of known techniques (Blomer ; Fouvry ; Kowalski et al. 2023).

Still when k£ = 2, Petridis and Risager (Petridis; Risager 2018) showed that
the question could be resolved by performing an additional average over de-
nominators, which means picking * € Q<o with the notations of the previous
section. Their main theorem applies to any given holomorphic modular form of
weight 2 on a Fuchsian group of the first kind, and implies in particular, for a
form f € Sj(IV), the existence of a constant o > 0 such that for all ¢ € R,

Ly(x) t e /2 dy
Py <of\/@ < t) [ S @) (2.10)

The method of Petridis and Risager (Petridis; Risager 2018) uses the computa-
tion of a moment generating function, and is capable of giving a statement of
type “quasi-powers” analogous to (2.4).

When k£ = 2, one of the known properties of the modular symbol translates
into the fact that the map

w = L(x) = Ly(yz)

is constant for any fixed v € T'o(N) (¢f (Mazur; Rubin 2021)). This property is
crucial in the setup of (Petridis; Risager 2018). This certainly shows that =z —
L(z) is a quantum modular form in the sense of Zagier.
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Consider now the case when the weight k£ € Z is larger than 2. For all v €
To(N), let
Oy(x) s w = Ly(x) = L(yz) (2.11)

When k£ > 2, the map « — L;(x) — Ly(yx) for v € I'y(N) is no longer necessa-
rily constant. However, as it is proven in (Bettin; Drappeau 2022b ; Nordentoft
2021a), all of the maps ¢, extend to functions on R which are (1 — ¢)-Holder
continuous and bounded in z € R. When N = 1, that is when [ is modular with
respect to SL(2,Z), corollary 3 allows us to deduce the following central limit
theorem on the values L;(z) for z € Q<¢, which is an analogue of the theorem
of Petridis-Risager where the hypothesis “f € Sy(N)” is replaced by “f € Si(1)”.

Théoréme 12 (Bettin ; Drappeau 2022b). Assume that f € Si(1). There exists oy >
0 such that the estimate (2.10) holds for allt € R, as Q — 0.

The new aspect of our work is the fact that we use no information on f besides
a weak hypothesis on the regularity of ¢, . It is the strategy of the method, based
on the expression in terms of iterates of the Gauss map, which allows this.

Lee and Sun (Lee; Sun 2019), independently of us and roughly at the same
time, had the same idea of using Baladi-Vallée’s strategy on this problem, and
could handle the case when f € S3(N). A main novel ingredient in their work
is the idea to use a natural extension of the Gauss map to handle congruence
groups.

At about the same time, Nordentoft (Nordentoft 2021b) obtained the estimate
of theorem 12 for any holomorphic modular form f on a Fuchsian group of the
first kind, which includes theorem 12 as a special case. Nordentoft’s method
is different form Petridis-Risager’s, Lee-Sun’s and ours, but is more related to
Petridis-Risager’s, and goes through the computation of moments.

In a recent work with Nordentoft (Drappeau ; Nordentoft 2022), we obtained
a result on the regularity on the maps (2.11) in the general case of a Maal} form
on a Fuchsian subgroup of SL(2, R) of the first kind, which generalizes both the
cases of holomorphic forms (Nordentoft’s theorem) which we just discussed, and
also the situation of the Estermann function a,, = 7(n), which corresponds to a
special case when the Maal$ form is a certain Eisenstein series. This allows us to
prove a central limit theorem analogous to theorem 12 when f is replaced by a
Maal} form for the particular group SL(2,Z).

In a work in progress with Bettin and Lee, we are trying to work out an ana-
logue of theorem 11 for the action of a general Fuchsian group of the first kind
on the set of its cusps. When this work will have converged, we hope to have a
limit law similar to (2.10) valid for all twisted L-values of L-functions of rank 2,
in the sense of (Iwaniec; Kowalski 2004, Chapitre V).
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2.2 Value distribution of a quantum knot
invariant

In Zagier’s article (Zagier 2010) where he introduces quantum modular forms,
a singular example arises from Kashaev invariants in knot theory.. The exact
definition of this invariant in general involves a very delicate combinatorial
construction starting from a knot diagram. In the simplest non-trivial case, that
of the “figure eight” knot denotes 4,, this invariant takes the shape of a func-
tion J : Q — R given by

J(r) = f: f[ 11— e(rz)|*. (2.12)

n=0r=1

The sum is finite when = € Q. Zagier noticed numerically that the map & defined
by
log J(x) — log J(1/z) = h(z) (2.13)

seems to extend to R \ {0} as a somewhat regular function, for instance conti-
nuous almost everywhere, whereas the function J itself is very irregular. These
two maps are drawn on figures 3 and 4 of (Zagier 2010).

Conjecture 3 (Zagier). — The map h extends to a function on R\ {0} which
is continuous at irrationals, and left- and right-continuous at rationals.

— We have h(z) = € — 2logx + O(1) for x €]0,1], where C = Vol(4,) /27 ~

T 2
0,323 and Vol(4,) is the hyperbolic volume of the figure eight knot complement.

This map gives the opportunity of an interesting application of theorem 11.
Indeed, by definition of / and using the value J(0) = 1, we have

r(z)
log J(z) = Y- h(T?™(x). (2.14)

The function h does not exactly satisfy the regularity hypotheses stated in theo-
rem 11, but it is not very far from it. If conjecture 3 was true, we would deduce
the convergence in law to a stable law of parameter 1 similar to (2.8), for the
values taken by log J(z) at rationals ordered by denominators.

We therefore went looking with Sandro Bettin for a proof of Zagier’s conjec-
ture. This led us to study more precisely the g-Pochhammer symbol,

(@ =01-q...01=¢"), (NeN), (2.15)

whose modulus squared is involved in the definition (2.12). This sort of product
is also called, in other contexts, a Sudler product (Sudler 1964), and we will
come back to this later on.
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The symbol (q)y can be viewed as a truncated version of the Dedekind 7-

function,
n(z)=[[(1—e(nz)),  (Im(z)>0),
n>1
which is a modular form of weight 1/2.

One of the two main results in the work (Bettin ; Drappeau 2022c) with Sandro
Bettin is a form of modularity for the ¢-Pochhammer symbol. We denote den(x)
the denominator of = € Q. Stated in an informal way, our result can be expressed
as follows.

Théoréme 13 (Bettin; Drappeau 2022c). Let v € SL(2,Z). For 1 <r < den(yx),
we have

e(3)(e(ye))r = x(7) e(33) (e(x))r by (2, 7), (2.16)

for some 1 < 1" < den(x), where x is the central character (“nebentypus”) associated
to the Dedekind function (Iwaniec 1997, p. 45), and 1., is a map satisfying certain
holomorphicity conditions.

The variable with respect to which ¢, extends as a holomorphic function is z =
{rden(z)/den(vx)}. Our starting point is the summation formula of Abel-Plana
applied to the sum

N
> log(1 — e(nz)).
n=1
The Abel-Plana formula is a version of the classical Euler-Maclaurin formula,
where the error term is expressed in an exact way as an integral of the sum-
mand, here log(1 — e(z)). Our argument exploits, implicitely, the fact that the
function log(1 — e(z)) is close to a primitive of the function 7 cot(wz), which is
the summation kernel associated to integers (it has a simple pole of residue 1 at
every integer).

The fact that formula (2.16) is exact, as well as the holomorphicity property
we mentioned about ., are two crucial aspects when one tries to sum this for-
mula over r. Here we strongly relied on work of Ohtsuki Ohtsuki 2016. This has
allowed us to obtain a proof of Zagier’s conjecture for certain special cases of
hyperbolic knots 3. In the case of the figure eight knot, we deduce the following

property.

Théoréme 14 (Bettin; Drappeau 2022c). There exists a sequence (c,) of real
numbers such that for all Q,N > 1 and z € ]0,1], if den(x) < Q, we have

C 3 N—-1 N
h(z) = — §logx + Y cpr™ + Og n(zV).

n=0

3. The few knots we study are essentially those for which the volume conjecture of Kashaev (Ka-
shaev 1997) is known ; conversely, Zagier’s conjectures implies the volume conjecture.
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Now equipped with such a property, we would like to be able to deduce,
through the definition (2.13), a limiting law for the values log J(z). Unfortuna-
tely, the fact that the error term depends implicitely on the denominator of x
forbids us to undergo this strategy at this point. We found an indirect successful
path, however, by complementing theorem 13 with another reciprocity formula.

Write © = [0;ay,...,a,] the continued fraction expansion of z. Applying the
Gauss map consists in taking away from = its first coefficient,

T(x)=1[0;aq,...,a.

In certain circumstances (Bettin ; Conrey 2013), it is analytically beneficial to try
to take away its last coefficient instead,

U(z) :=1[0;a1,...,a,-1].

This amounts, up to a sign, to conjugating the Gauss map by the involution which
associates to a fraction a/q € ]0, 1| the fraction (—1)""'a/q (mod 1), where aa =
1 (mod ¢). Indeed this involution has the effect of reversing the continued frac-
tion expansion.
The Bezout relation L

a q 1

-4+ == — (mod 1)

g a aq
is a precise version of the assertion that the numbers = and U(x) are close to
each other, which can also be seen from the definition of U.

We obtain the following relation.

Théoréme 15 (Bettin; Drappeau 2022c¢). We have
log J(z) =log J(U(x)) + Ca,(x) + E(z),
where E(x) is an error term bounded by log a,.(x) in most circumstances.

This theorem is specific to the knot 4,, contrarily to theorems 13 and 14. Trea-
ting the error term required a specific technical lemma about partial sums of the
cotangent function (Bettin ; Drappeau 2020), which was one of the most trouble-
some part of the argument.

The conjunction of theorems 13 and 15 yields just enough information on the
function J to obtain, through the iteration (2.14), the following approximation.

We recall that 3(z) = Y1) a;(x).

Théoréme 16 (Bettin; Drappeau 2022¢). For all z € Q N0, 1], we have

log J(x) ~ C¥(z), =(z) — 0.
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On the one hand, it is classically known that r(x) < log @ when den(z) < Q.
On the other hand, corollary 4 ensures that

N(x) ~ 715 (log Q) loglog @

for a proportion 1 + o(1) of rationals = € g% We immediately deduce the
following corollary, which can be seen as a law of large numbers for the values
of log J(z) for = € Q.

Corollaire 6 (Bettin; Drappeau 2022c). There exists a map € : N — Ry
with €(Q) — 0 as Q — oo, such that

log.(2) = (5C + O(E(@)) ) (log @) loglog @

for all x € Qg, with at most £(Q)Q? exceptions.

Very recently, Aistleitner and Borda obtained several results on J(z) using
their works on perturbations of products of the sine function (Borda; Aistleit-
ner 2022c; Borda; Aistleitner 2022b; Borda; Aistleitner 2022a). In particular,
it is proved in corollary 2 of (Borda; Aistleitner 2022a) that the map h defi-
ned in (2.13) can be extended by density to a function which is almost everyw-
here continuous on R \ {0}. More precisely, Aistleitner and Borda show that
this extension of the function h is continuous at those irrationals = which are
“well-approximable” in the sense that the sequence (a;(x)); is unbounded. This
allowed them to obtain, in theorem 4 of (Borda; Aistleitner 2022a), a central
limit theorem for log J(x), of the same precision as corollary 4.

One of the main questions left open is the continuity of & at badly approxi-
mable rationals, in particular at quadratic irrationals such as 1/¢ = [0;1,1,...].
This is the topic of a work in progress with Sandro Bettin and Bence Borda. We
have good hope in the case of quadratic irrationals.

Another lead we wish to explore, but on which we have no serious angle of at-
tack, is to the validity of the law of large numbers of the same type as corollary 6,
for more general knots. Our proof for the knot 4, uses crucially the positivity of
the summands in (2.12), and a new idea is required in order to dispense with this
ingredient. It is more precisely our proof of theorem 15 which does not seem to
be well-suited to other cases. The works of Aistleitner-Borda (Borda ; Aistleitner
2022a), as well as our work in progress with Sandro Bettin and Bence Borda on
the function h, may give another starting point.

4. Actually this is true for a proportion 1 + o(1) of rationals € €, without averaging over
the denominators, thanks to works of Rukavishnikova (Rukavishnikova 2011); see also the recent
paper (Aistleitner ; Borda ; Hauke 2022).
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